• Title/Summary/Keyword: non-renewing minimal repair warranty

Search Result 8, Processing Time 0.018 seconds

Replacement Model Following the Expiration of Free RRNMW (무료 재생교체-비재생수리보증이 종료된 이후의 교체모형)

  • Jung, Ki-Mun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.697-705
    • /
    • 2011
  • This paper proposes an optimal replacement policy following the expiration of a free renewing replacement-non-renewing minimal repair warranty. To do so, the free renewing replacement-non-renewing minimal repair warranty is defined and then the maintenance model following the expiration of free renewing replacement-non-renewing minimal repair warranty from the user's point of view is studied. As the criteria to determine the optimality of the maintenance policy, we consider the expected cost rate per unit time from the user's perspective. We derive the expressions for the expected cycle length and the expected total cost to obtain the expected cost rate per unit time. Finally, the numerical examples are presented for illustrative purposes.

Optimal replacement policy following the expiration of payable RRNMW (유료 재생교체-비재생수리보증이 종료된 이후의 최적의 교체정책)

  • Jung, Ki-Mun
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.409-417
    • /
    • 2011
  • In this paper, we consider a replacement model following the expiration of warranty. In other words, this paper proposes the optimal replacement policy for a repairable system following the expiration of payable renewing replacement-non-renewing minimal repair warranty. The expected cost rate per unit time from the user's perspective is used to determine the optimality of the replacement policy. Thus, we derive the expressions for the expected cycle length and the expected total cost to obtain the expected cost rate per unit time. Finally, the numerical examples are presented for illustrative purpose.

Optimal Replacement Policy for a Repairable System with Combination Warranty (혼합보증이 있는 수리 가능한 시스템에 대한 최적의 교체정책)

  • 정기문
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.107-117
    • /
    • 2002
  • In this paper we present the optimal replacement policies following the expiration of combination warranty. We consider two types of combination warranty policies: renewing warranty and non-renewing warranty. The criterion used to determine the optimal replacement period is the expected cost rate per unit time from the user'perspective. The optimal maintenance period following the expiration of combination warranty is obtained. Some numerical examples are presented for illustrative purpose.

Replacement Model Following the Expiration of NFRRW (비 재생무료교체-수리보증이 종료된 이후의 교체모형)

  • Jung, Ki-Mun
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1147-1156
    • /
    • 2010
  • This paper proposes a replacement policy following the expiration of a non-renewing free replacement-repair Warranty(NFFRW). The non-renewing free replacement-repair warranty is defined and then the maintenance model following the expiration of the NFRRW is studied from the user's point of view. As the criteria to determine the optimality of the maintenance policy, we consider the expected cost rate per unit time from the user's perspective. All maintenance costs of the system incurred after the expiration of the warranty are paid by the user. Given the cost structures during the life cycle of the system, we determine the optimal maintenance period following the expiration of a NFRRW. Finally, the numerical examples are presented for illustrative purposes.

Replacement Model Based on Cost and Downtime

  • Jung, Ki-Mun;Han, Sung-Sil;Lim, Jae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.889-901
    • /
    • 2003
  • In this paper, we consider the optimal replacement policies following the expiration of the combination warranty. The combination warranty can be divided into the renewing combination warranty and the non-renewing combination warranty. The criterion used to determine the optimal replacement period is the overall value function based on the expected cost and the expected downtime. Thus, we obtain the expected cost rate per unit time and the expected downtime per unit time for our model. And then the overall value function suggested by Jiagn and Ji(2002) is applied to obtain the optimal replacement period. The numerical examples are presented for illustrative purpose.

  • PDF

Two stage maintenance policy under non-renewing warranty (비재생보증 하에서의 이단계 보전정책)

  • Jung, Ki Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1557-1564
    • /
    • 2016
  • Recently, an extended warranty of a system following the expiration of the basic warranty is becoming increasingly popular to the user. In this respect, we suggest a two stage maintenance policy under the non-renewing warranty from the user's point of view in this paper. In the first stage, the user has to decide whether or not to purchase the extended warranty period. And, in the second stage, the optimal replacement period following the expiration of the warranty is determined. Under the extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user. We utilize the expected cost from the user's perspective to determine the optimal two stage maintenance policy. Finally, a few numerical examples are given for illustrative purpose.

Periodic PM Policy for Repairable System with RCW or NCW

  • Jung, Gi-Mum;Kim, Dae-Kyung;Park, Dong-Ho
    • International Journal of Reliability and Applications
    • /
    • v.3 no.3
    • /
    • pp.113-124
    • /
    • 2002
  • This paper suggests the optimal periodic preventive maintenance policies after the combination warranty is expired. After the combination warranty is expired, a repairable system undergoes PM periodically and is minimally repaired at each failure. And also the system is replaced by a new system at the N th PM. In this case, we derive the mathematical formula for the expected cost rate per unit time. The optimal number and period for the periodic PM that minimize the expected cost rate per unit time are obtained. Some numerical examples are presented for illustrate purpose.

  • PDF

Optimization of Improvement Level for Second-Hand Product with Periodic Maintenance Schedule (주기적인 유지보수 계획에 따른 중고제품에 대한 최적 향상수준)

  • Kim, Dae-Kyung;Kim, Jin Woo;Park, Dong Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.151-162
    • /
    • 2013
  • Due to a growing demand for the second-hand product, especially for the expensive one, the warranty and maintenance policies for such products have been studied to improve the product reliability of late. In this paper we study a periodic maintenance model for the second-hand product which is purchased by the customer at the age of $x$. When purchased, the dealer provides a warranty of a fixed length during which the product is maintained periodically to reduce the failure rate of the product and thus, to improve the reliability after each maintenance is served. If a failure occurs between two successive maintenances, only minimal repair is conducted. As for the warranty policy, we adopt free non-renewing repair action on each failure, in addition to the periodic maintenance service during the warranty period. Thus, under the given warranty policy, all the maintenance and repair costs incurred during the warranty period are charged to the dealer. For the proposed periodic maintenance scheme, we formulate a cost model to evaluate the expected total cost charged to the dealer during the warranty period and derive an optimal upgrade level of the failure rate at each maintenance to minimize the expected total warranty cost from the perspective of the dealer. We also present numerical results for an optimal upgrade level based on the proposed methods.