• Title/Summary/Keyword: non-recycled hydroponics

Search Result 2, Processing Time 0.019 seconds

Effect of Using Waste Nutrient Solution Fertigation on the Musk Melon and Cucumber Growth (페양액을 이용한 관비재배가 머스크 멜론과 오이의 생육에 미치는 영향)

  • Zhang, Cheng-Hao;Kang, Ho-Min;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.400-405
    • /
    • 2006
  • Waste nutrient solution(WNS) using non-recycled hydroponics for melon increased contents of $NO_3$-N and cataions, such as, Ca, K, while anions except $NO_3$-N were decreased slightly as the musk melon plants grew. pH and EC of WNS were maintained 5.7$\sim$7.0, 2.0$\sim$2.2 $dS{\cdot}m^{-1}$, respectively. The musk melon plants cultivated by fertigation using WNS showed longer plant height and root length, and higher chlorophyll content than that grown by hydroponics. The fruit weight of musk melon grown by fertigation using WNS were 417.1 g heavier than that cultivated by hydroponics and soluble solids contents of musk melon fruit cultivated by fertigation using WNS was $13.3^{\circ}Brix$, that was $1.4^{\circ}Brix$ higher than that grown by hydroponics. While the growth of cucumber plants and size of cucumber fruits were not different between in fertigation using WNS and hydroponics, total yields and marketable fruit percentage showed more in fertigation using WNS than in hydroponics.

Effect of Plant Growth and Production of Tomato on the Water Content Control in Rockwool Culture (암면배지의 수분제어가 토마토의 생육 및 생산성에 미치는 영향)

  • Moon, Doo-Gyung;Kim, So-Hee;Cho, Myeng-Whan;Yu, In-Ho;Ryu, Hee-Ryong;Choi, Kyung-Hee;Kwon, Yong-Hee;Lee, So-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2018
  • This study was carried out to investigate the effect of plant growth and production of tomato (Lycopersicon Esculentum Mill cv. Tefunis) according to the water content of non-recycled rockwool culture in high-rise tomato greenhouse. Daily irrigation amount was 3.8 times higher in the irrigation control by Integrated Solar Radiation (ISR) than in the Frequency Domain Reflectometry (FDR) sensor. Water content of ISR and FDR was 90-95 and 60-65%, respectively. Plant height and weight of tomato fruit was 1.2-1.9 times longer and 1.2-2.0 times heavier in the ISR than in the FDR sensor, respectively. No significantly differed to sugar content of tomato by treatments. Marketable fruits were the higher 1.3 times in the ISR compared with the FDR sensor. Cracking percentage in the ISR was also the higher 2.0 times compared with FDR sensor. Therefore, Irrigation control by ISR was appropriate to improve of plant growth and production of tomato with non-recycled rockwool culture in greenhouse during long-term cultivation.