• Title/Summary/Keyword: non-persistent joint

Search Result 27, Processing Time 0.027 seconds

A Study on the Basic Characteristics of Persistent Current Mode Operation for Small Scale High Temperature Superconducting Coil with No-insulation Winding Method (No-insulation 기법을 적용한 소용량 고온 초전도 코일의 영구전류 특성에 관한 연구)

  • Lee, T.S.;Lee, W.S.;Choi, S.;Jo, H.C.;Kim, H.J.;Lee, J.;Kang, J.S.;Kwon, O.J.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.23-27
    • /
    • 2012
  • This paper aims to evaluate the feasibility of using no-insulation High Temperature Superconducting (HTS) coil in persistent current mode system. A HTS coil in persistent current mode system usually includes one or more non-superconducting joints in its circuit. And the current decaying rate of the coil is affected by the resistance of joint in persistent current circuit. If the resistance of joint is large, decaying rate of the current drastically increases. Therefore, reducing the joint resistance of the HTS coil is very important in persistent current mode system. In this paper, the no-insulation HTS coil is suggested as a way to reduce the joint resistance with the embedded parallel contact resistance naturally made by no-insulation winding method. Two small coils are fabricated with insulation and no-insulation winding method, and persistent current mode system experiment of each coil is preformed and analyzed.

Numerical simulation of shear mechanism of concrete specimens containing two coplanar flaws under biaxial loading

  • Sarfarazi, Vahab;Haeri, Hadi;Bagheri, Kourosh
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.459-468
    • /
    • 2018
  • In this paper, the effect of non-persistent joints was determined on the behavior of concrete specimens subjected to biaxial loading through numerical modeling using particle flow code in two dimensions (PFC2D). Firstly, a numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, sixteen rectangular models with dimension of 100 mm by 100 mm were developed. Each model contains two non-persistent joints with lengths of 40 mm and 20 mm, respectively. The angularity of the larger joint changes from $30^{\circ}$ to $90^{\circ}$. In each configuration, the small joint angularity changes from $0^{\circ}$ to $90^{\circ}$ in $30^{\circ}$ increments. All of the models were under confining stress of 1 MPa. By using of the biaxial test configuration, the failure process was visually observed. Discrete element simulations demonstrated that macro shear fractures in models are because of microscopic tensile breakage of a large number of bonded discs. The failure pattern in Rock Bridge is mostly affected by joint overlapping whereas the biaxial strength is closely related to the failure pattern.

The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes (절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향)

  • Woon Sang Yoon
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.317-327
    • /
    • 2024
  • When a non-persistent joint system is formed in a large-scale rock slope, slope failure may occur due to presence of a the stepped sliding surface. Such a surface can be divided into joint-to-joint sliding surfaces or joint-to-rock bridge sliding surfaces. In the latter case, the rock bridge provides shear resistance parallel to the joint and tensile resistance perpendicular to the joint. The load of the sliding rock can lead to failure of the rock bridge, thereby connecting the two joints at each ends of the bridge and resulting in step-path failure of the slope. If each rock bridge on a slope has the same length, the tensile strength is lower than the shear strength, resulting in the rock bridges oriented perpendicular to the joint being more prone to failure. In addition, the smaller the ratio of discontinuity spacing to length, the greater the likelihood of step-path failure. To assess the risk of stepped sliding on a rock slope with non-persistent joints, stability analysis can be performed using limit equilibrium analysis or numerical analysis. This involves constructing a step-path failure surface through a systematic discontinuity survey and analysis.

Exploring shrinkage crack propagation in concrete: A comprehensive analysis through theoretical, experimental, and numerical approaches

  • Vahab Sarfarazi;Soheil Abharian;Nima Babanouri
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • This study explores the failure mechanisms of 'I' shaped non-persistent cracks under uniaxial loads through a combination of experimental tests and numerical simulations. Concrete specimens measuring 200 mm×200 mm×50 mm were manufactured, featuring 'I' shaped non-persistent joints. The number of these joints varied from one to three, with angles set at 0, 30, 60, and 90 degrees. Twelve configurations, differing in the placement of pre-existing joints, were considered, where larger joints measured 80 mm in length and smaller cracks persisted for 20 mm with a 1 mm crack opening. Numerical models were developed for the 12 specimens, and loading in Y-axis direction was 0.05 mm/min, considering a concrete tensile strength of 5 MPa. Results reveal that crack starting was primarily influenced by the slope of joint that lacks persistence in relation to the loading direction and the number of joints. The compressive strength of the samples exhibited variations based on joint layout and failure mode. The study reveals a correlation between the failure behavior of joints and the number of induced tensile fracture, which increased with higher joint angles. Specimen strength increased with decreasing joint angles and numbers. The strength and failure processes exhibited similarities in both laboratory testing and numerical modeling methods.

Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation

  • Vahab Sarfarazi;Kaveh Asgari;Mehdi Kargozari;Pouyan Ebneabbasi
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • In this investigation, the interaction between opening space and neighboring joint has been examined by experimental test and Particle flow code in two dimension (PFC2D) simulation. Since, firs of all PFC was calibrated using Brazilian experimental test and uniaxial compression test. Secondly, diverse configurations of opening and neighboring joint were provided and tested by uniaxial test. 12 rectangular sample with dimension of 10 cm*10 cm was prepared from gypsum mixture. One quarter of tunnel and one and or two joint were drilled into the sample. Tunnel diameter was 5.5 cm. The angularities of joint in physical test were 0°, 45° and 90°. The angularities of joint in numerical simulation were 0°, 30°, 60°, -30°, -45°, -60° and its length were 2cm and 4cm. Loading rate was 0.016 m/s. Tensile strength of material was 4.5 MPa. Results shows that dominant type of crack which took place in the model was tensile cracks and or several shear bands develop within the model. The Final stress is minimum in the cases where oriented angle is negative. The failure stress decrease by decreasing the joint angle from 30° to 60°. In addition, the failure stress decrease by incrementing the joint angle from -30° to -60°. The failure stress was incremented by decreasing the number of notches. The failure stress was incremented by decreasing the joint length. The failure stress was incremented by decreasing the number of notches. Comparing experimental results and numerical one, showed that the failure stress is approximately identical in both conditions.

Treatment of Rockwood Type III Acromioclavicular Joint Dislocation

  • Kim, Seong-Hun;Koh, Kyoung-Hwan
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.1
    • /
    • pp.48-55
    • /
    • 2018
  • While non-operative treatment with structured rehabilitation tends to be the strategy of choice in the management of Rockwood type III acromioclavicular joint injury, some advocate surgical treatment to prevent persistent pain, disability, and prominence of the distal clavicle. There is no clear consensus regarding when the surgical treatment should be indicated, and successful clinical outcomes have been reported for non-operative treatment in more than 80% of type III acromioclavicular joint injuries. Furthermore, there is no gold standard procedure for operative treatment of type III acromioclavicular joint injury, and more than 60 different procedures have been used for this purpose in clinical practice. Among these surgical techniques, recently introduced arthroscopic-assisted procedures involving a coracoclavicular suspension device are minimally invasive and have been shown to achieve successful coracoclavicular reconstruction in 80% of patients with failed conservative treatment. Taken together, currently available data indicate that successful treatment can be expected with initial conservative treatment in more than 96% of type III acromioclavicular injuries, whereas minimally invasive surgical treatments can be considered for unstable type IIIB injuries, especially in young and active patients. Further studies are needed to clarify the optimal treatment approach in patients with higher functional needs, especially in high-level athletes.

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Acute Malocclusion Related to Posterior Disc Displacement According to Complete Disc Tearing: Two Case Reports

  • Jo-Eun Park
    • Journal of Oral Medicine and Pain
    • /
    • v.49 no.2
    • /
    • pp.29-34
    • /
    • 2024
  • Acute malocclusion can occur in conditions related to temporomandibular joint (TMJ) disorders. This report presents two cases of acute malocclusion related to posterior disc displacement according to complete disc tearing. A 65-year-old male and an 88-yearold female presented with TMJ pain and occlusal discrepancies. Clinical examination, computed tomography, and magnetic resonance imaging revealed complete disc tearing and posterior displacement of a partial disc fragment. Dental cast analysis revealed a slight anterior and lateral deviation of the mandible toward the non-affected side; however, clinically, significant occlusal changes were not observed. This was attributed to the displacement of a small disc fragment rather than the entire disc. Including the cases presented, most instances of complete disc tearing responded well to conservative treatment such as pharmacotherapy and physical therapy, resulting in pain alleviation, and residual occlusal changes were tolerable for the patients in their daily activities. However, persistent occlusal changes or severe chewing difficulty may require surgical intervention.

Therapeutic lumbar facet joint nerve blocks in the treatment of chronic low back pain: cost utility analysis based on a randomized controlled trial

  • Manchikanti, Laxmaiah;Pampati, Vidyasagar;Kaye, Alan D.;Hirsch, Joshua A.
    • The Korean Journal of Pain
    • /
    • v.31 no.1
    • /
    • pp.27-38
    • /
    • 2018
  • Background: Related to escalating health care costs and the questionable effectiveness of multiple interventions including lumbar facet joint interventions, cost effectiveness or cost utility analysis has become the cornerstone of evidence-based medicine influencing coverage decisions. Methods: Cost utility of therapeutic lumbar facet joint nerve blocks in managing chronic low back pain was performed utilizing data from a randomized, double-blind, controlled trial with a 2-year follow-up, with direct payment data from 2016. Based on the data from surgical interventions, utilizing the lowest proportion of direct procedural costs of 60%, total cost utility per quality adjusted life year (QALY) was determined by multiplying the derived direct cost at 1.67. Results: Patients in this trial on average received $5.6{\pm}2.6$ procedures over a period of 2 years, with average relief over a period of 2 years of $82.8{\pm}29.6$ weeks with $19{\pm}18.77$ weeks of improvement per procedure. Procedural cost for one-year improvement in quality of life showed USD $2,654.08. Estimated total costs, including indirect costs and drugs with multiplication of direct costs at 1.67, showed a cost of USD $4,432 per QALY. Conclusions: The analysis of therapeutic lumbar facet joint nerve blocks in the treatment of chronic low back pain shows clinical effectiveness and cost utility at USD $2,654.08 for the direct costs of the procedures, and USD $4,432 for the estimated overall cost per one year of QALY, in chronic persistent low back pain non-responsive to conservative management.