• Title/Summary/Keyword: non-parametric method

Search Result 410, Processing Time 0.027 seconds

Intensive comparison of semi-parametric and non-parametric dimension reduction methods in forward regression

  • Shin, Minju;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.615-627
    • /
    • 2022
  • Principal Fitted Component (PFC) is a semi-parametric sufficient dimension reduction (SDR) method, which is originally proposed in Cook (2007). According to Cook (2007), the PFC has a connection with other usual non-parametric SDR methods. The connection is limited to sliced inverse regression (Li, 1991) and ordinary least squares. Since there is no direct comparison between the two approaches in various forward regressions up to date, a practical guidance between the two approaches is necessary for usual statistical practitioners. To fill this practical necessity, in this paper, we newly derive a connection of the PFC to covariance methods (Yin and Cook, 2002), which is one of the most popular SDR methods. Also, intensive numerical studies have done closely to examine and compare the estimation performances of the semi- and non-parametric SDR methods for various forward regressions. The founding from the numerical studies are confirmed in a real data example.

Semi-parametric Bootstrap Confidence Intervals for High-Quantiles of Heavy-Tailed Distributions (꼬리가 두꺼운 분포의 고분위수에 대한 준모수적 붓스트랩 신뢰구간)

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.717-732
    • /
    • 2011
  • We consider bootstrap confidence intervals for high quantiles of heavy-tailed distribution. A semi-parametric method is compared with the non-parametric and the parametric method through simulation study.

Video retrieval method using non-parametric based motion classification (비-파라미터 기반의 움직임 분류를 통한 비디오 검색 기법)

  • Kim Nac-Woo;Choi Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.1-11
    • /
    • 2006
  • In this paper, we propose the novel video retrieval algorithm using non-parametric based motion classification in the shot-based video indexing structure. The proposed system firstly gets the key frame and motion information from each shot segmented by scene change detection method, and then extracts visual features and non-parametric based motion information from them. Finally, we construct real-time retrieval system supporting similarity comparison of these spatio-temporal features. After the normalized motion vector fields is created from MPEG compressed stream, the extraction of non-parametric based motion feature is effectively achieved by discretizing each normalized motion vectors into various angle bins, and considering a mean, a variance, and a direction of these bins. We use the edge-based spatial descriptor to extract the visual feature in key frames. Experimental evidence shows that our algorithm outperforms other video retrieval methods for image indexing and retrieval. To index the feature vectors, we use R*-tree structures.

Auto-parametric resonance of framed structures under periodic excitations

  • Li, Yuchun;Gou, Hongliang;Zhang, Long;Chang, Chenyu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.497-510
    • /
    • 2017
  • A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a ${\Gamma}$-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

Sample size determination based on placements for non-inferiority trials (비열등성 시험에서 위치 방법에 기초한 표본 수 결정)

  • Kim, Jiyeon;Kim, Dongjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1349-1357
    • /
    • 2013
  • In clinical research, sample size determination is one of the most important things. There are parametric method using t-test and non-parametric method suggested by Kim and Kim (2007) based on Wilcoxon's rank sum test for determining sample size in non-inferiority trials. In this paper, we propose sample size calculation method based on placements method suggested by Orban and Wolfe (1982) and using the power calculated by Kim (1994) in non-inferiority trials. We also compare proposed sample size with that using Kim and Kim (2007)'s formula and that of t-test for parametric methods. As the result, sample size calculated by proposed method based on placements is the smallest. Therefore, proposed method based on placements is better than parametric methods in case that it's hard to assume specific distribution function for population and also more efficient in terms of time and cost than method based on Wilcoxon's rank sum test.

A new approach for content-based video retrieval

  • Kim, Nac-Woo;Lee, Byung-Tak;Koh, Jai-Sang;Song, Ho-Young
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.24-28
    • /
    • 2008
  • In this paper, we propose a new approach for content-based video retrieval using non-parametric based motion classification in the shot-based video indexing structure. Our system proposed in this paper has supported the real-time video retrieval using spatio-temporal feature comparison by measuring the similarity between visual features and between motion features, respectively, after extracting representative frame and non-parametric motion information from shot-based video clips segmented by scene change detection method. The extraction of non-parametric based motion features, after the normalized motion vectors are created from an MPEG-compressed stream, is effectively fulfilled by discretizing each normalized motion vector into various angle bins, and by considering the mean, variance, and direction of motion vectors in these bins. To obtain visual feature in representative frame, we use the edge-based spatial descriptor. Experimental results show that our approach is superior to conventional methods with regard to the performance for video indexing and retrieval.

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

A comparison and prediction of total fertility rate using parametric, non-parametric, and Bayesian model (모수, 비모수, 베이지안 출산율 모형을 활용한 합계출산율 예측과 비교)

  • Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.677-692
    • /
    • 2018
  • The total fertility rate of Korea was 1.05 in 2017, showing a return to the 1.08 level in the year 2005. 1.05 is a very low fertility level that is far from replacement level fertility or safety zone 1.5. The number may indicate a low fertility trap. It is therefore important to predict fertility than at any other time. In the meantime, we have predicted the age-specific fertility rate and total fertility rate by various statistical methods. When the data trend is disconnected or fluctuating, it applied a nonparametric method applying the smoothness and weight. In addition, the Bayesian method of using the pre-distribution of fertility rates in advanced countries with reference to the three-stage transition phenomenon have been applied. This paper examines which method is reasonable in terms of precision and feasibility by applying estimation, forecasting, and comparing the results of the recent variability of the Korean fertility rate with parametric, non-parametric and Bayesian methods. The results of the analysis showed that the total fertility rate was in the order of KOSTAT's total fertility rate, Bayesian, parametric and non-parametric method outcomes. Given the level of TFR 1.05 in 2017, the predicted total fertility rate derived from the parametric and nonparametric models is most reasonable. In addition, if a fertility rate data is highly complete and a quality is good, the parametric model approach is superior to other methods in terms of parameter estimation, calculation efficiency and goodness-of-fit.

Detecting Foreground Objects Under Sudden Illumination Change Using Double Background Models (이중 배경 모델을 이용한 급격한 조명 변화에서의 전경 객체 검출)

  • Saeed, Mahmoudpour;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.268-271
    • /
    • 2016
  • In video sequences, foreground object detection being composed of a background model and a background subtraction is an important part of diverse computer vision applications. However, object detection might fail in sudden illumination changes. In this letter, an illumination-robust background detection is proposed to address this problem. The method can provide quick adaption to current illumination condition using two background models with different adaption rates. Since the proposed method is a non-parametric approach, experimental results show that the proposed algorithm outperforms several state-of-art non-parametric approaches and provides low computational cost.

Application of Fuzzy Information Representation Using Frequency Ratio and Non-parametric Density Estimation to Multi-source Spatial Data Fusion for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.114-128
    • /
    • 2005
  • Fuzzy information representation of multi-source spatial data is applied to landslide hazard mapping. Information representation based on frequency ratio and non-parametric density estimation is used to construct fuzzy membership functions. Of particular interest is the representation of continuous data for preventing loss of information. The non-parametric density estimation method applied here is a Parzen window estimation that can directly use continuous data without any categorization procedure. The effect of the new continuous data representation method on the final integrated result is evaluated by a validation procedure. To illustrate the proposed scheme, a case study from Jangheung, Korea for landslide hazard mapping is presented. Analysis of the results indicates that the proposed methodology considerably improves prediction capabilities, as compared with the case in traditional continuous data representation.