• Title/Summary/Keyword: non-minimum phase

Search Result 135, Processing Time 0.024 seconds

A Study on the Characteristics Improvement of Fluid Power Actuator Using Adaptive Control (적응제어를 이용한 유압 액츄에이터의 특성개선에 관한 연구)

  • 염만오;윤일로
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 2004
  • A hydraulic system is difficult to keep the performance due to non-linearity, load pressure which changes according to working condition and system parameter variation, the requirement of control algorithm has been risen in order to satisfy them. An adaptive control is a control method which is suggested to achieve a control object though plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp, adaptive control can keep the characteristics of closed-loop system regularly. In this study GMVAC(generalized minimum variance adaptive control) combined with output error feedback is proposed in order to solve problems of non-minimum phase, vibration and overshoot in initial response of the plant. The control performance according to the variation of characteristics of the plant is evaluated by changing the supply pressure only.

Determining minimum non-connected concrete panel thickness and concrete type impact on seismic behavior of CSPSW

  • Mehdi Ebadi-Jamkhaneh
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.607-626
    • /
    • 2024
  • This study explores the use of advanced concrete types to improve the performance of composite steel shear walls (CSPSWs), particularly in delaying cracking and failure. A two-phase approach is implemented. Phase I utilizes non-linear finite element analysis and Gene Expression Programming to develop a novel method for determining the minimum concrete thickness required in CSPSWs. Phase II investigates the effect of concrete type, opening area, and location on the behavior of CSPSWs with openings. The results demonstrate that ultra-high performance concrete (UHPFRC) significantly reduces out-of-plane displacement and tensile cracking compared to normal concrete. Additionally, the study reveals a strong correlation between opening position and load-bearing capacity, with position L3 exhibiting the greatest reduction as opening size increases. Finally, UHPFRC's superior energy dissipation translatesto a higher equivalent viscous damping coefficient.

Analysis of the Esterification Process for Poly(ethylene terephthalate)

  • Ahn, Young-Cheol;Park, Soo-Myung
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.399-409
    • /
    • 2003
  • The first esterification reactor in the continuous polymerization of poly(ethylene terephthalate) has been analyzed by solving the material balances for the two-phase system with respect to the solubility of terephthalic acid. The Newton-Raphson method was used to solve the material balance equations instead of the Simplex method that is frequently used for finding a minimum point of a residual rather than a solution of an equation. A solution for the material balance equations, with the constraint of non-zero liquid phase fraction, could not be obtained with the solubility data of Yamada et al., but could be obtained with solubilities over a minimum value that is larger than their data. Thus, the solubility data of Yamada et al. are considered to be too small. On the other hand, the solubility data of Baranova and Kremer are so large that they gave a solution with the liquid phase only. Based on our results, several typical solubility curves satisfying the constraint of a non-zero liquid phase fraction are suggested in this study; we studied the reaction characteristics of the system using these curves. A higher temperature and a lower pressure are preferred for reducing the content of diethylene glycol.

Torque Sharing Function of SRM for Torque Ripple Reduction in Commutation Region (커뮤테이션 구간의 토크리플 저감을 위한 SRM의 토크 분배 함수 기법)

  • Kim, Tae-Hyoung;Wang, Huijun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.148-150
    • /
    • 2007
  • A novel torque sharing function (TSF) is presented. To improve efficiency and to reduce torque ripple in commutation region, only a phase torque under commutation is regulated to produce a uniform torque. And the torque developed by the other phase remains with the previous state under a current limit of the motor and drive. If the minimum change of a phase torque reference can not satisfy the total reference torque, two-phase changing mode is used. Since a phase torque is constant and the other phase torque is changed at each rotor position, total torque error can be reduced within a phase torque error limit. And the total torque error is dependent on the change of phase torque. To consider non-linear torque characteristics and to suppress a tail current at the end of commutation region, the incoming phase current is changed to torque increasing direction, but the outgoing phase current is changed to torque decreasing direction. So, the torque sharing of the outgoing phase and incoming phase can be smoothly changed with a minimum current cross over. The proposed control scheme is verified by some computer simulations and experimental results.

  • PDF

Design of Disturbance Observer-Based Robust Controller for a Time-Delay System (시간 지연을 갖는 시스템에 대한 외란 관측기 기반 강인 제어기 설계)

  • Jeong, Goo-Jong;Son, Young-Ik;Jeong, Yu-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.213-214
    • /
    • 2008
  • This paper considers design of a robust controller that alleviates disturbance effects and compensates performance degradation of plants with time-delay. Disturbance observer(DOB) approach as a tool of robust control has been widely employed in industry. However, since the time-delay makes the plant non-minimum phase, classical DOB cannot be applied directly to the time-delay system. By using a new DOB structure for non-minimum phase systems together with the Smith Predictor, we propose a new control algorithm for reducing the effects of disturbance and time-delay of the system.

  • PDF

Lyapunov Based Adaptive-Robust Control of the Non-Minimum phase DC-DC Converters Using Input-Output Linearization

  • Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1577-1583
    • /
    • 2015
  • In this research, a combined adaptive-robust current controller is developed for non-minimum-phase DC-DC converters in a wide range of operations. In the proposed nonlinear controller, load resistance, input voltage and zero interval of the inductor current are estimated using developed adaptation rules and knowing the operating mode of the converter for the closed-loop control is not required; hence, a single controller can be employed for a wide load and line changes in discontinuous and continuous conduction operations. Using the TMS320F2810 digital signal processor, the experimental response of the proposed controller is presented in different operating points of the buck/boost converter. During transition between different modes of the converter, the developed controller has a better dynamic response compared with previously reported adaptive nonlinear approach. Moreover, output voltage steady-state error is zero in different conditions.

A Study on the Level Control in the Steam Generator of a Nuclear Power Plant by using Model Predictive Controller (MPC를 이용한 원전 증기발생기의 수위제어에 관한 기초연구)

  • Son, Duk-Hyun;Lee, Chang-Goo;Han, Jin-Wook;Han, Hu-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2495-2497
    • /
    • 2000
  • Level control in the steam generator of a nuclear power plant is important process. But, the low power operation of nuclear power plant causes nonlinear characteristics and non minimum phase characteristics (swell and shrink), change of delay. So, we can't lead good results with conventional PID controller. Particularly, the design of controller with constraints is necessary. This paper introduces MPC(Model Predictive Control) with constraints and designs a good performance MPC controller in spite of the input constraints and nonlinear characteristics, non-minimum phase characteristics

  • PDF

Practical Encryption and Decryption System using Iterative Phase Wrapping Method (반복적인 위상 랩핑 방법을 이용한 실질적인 암호화 및 복호화 시스템)

  • Seo, Dong-Hoan;Lee, Sung-Geun;Kim, Yoon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.955-963
    • /
    • 2008
  • In this paper, we propose an improved practical encryption and fault-tolerance decryption method using a non-negative value key and random function obtained with a white noise by using iterative phase wrapping method. A phase wrapping operating key, which is generated by the product of arbitrary random phase images and an original phase image. is zero-padded and Fourier transformed. Fourier operating key is then obtained by taking the real-valued data from this Fourier transformed image. Also the random phase wrapping operating key is made from these arbitrary random phase images and the same iterative phase wrapping method. We obtain a Fourier random operating key through the same method in the encryption process. For practical transmission of encryption and decryption keys via Internet, these keys should be intensity maps with non-negative values. The encryption key and the decryption key to meet this requirement are generated by the addition of the absolute of its minimum value to each of Fourier keys, respectively. The decryption based on 2-f setup with spatial filter is simply performed by the inverse Fourier transform of the multiplication between the encryption key and the decryption key and also can be used as a current spatial light modulator technology by phase encoding of the non-negative values. Computer simulations show the validity of the encryption method and the robust decryption system in the proposed technique.

A study on Geometry of Labyrinth Seal for High Speed Machining Center (고속주축용 라비린스 시일의 형상설계에 관한 연구)

  • 나병철;전경진;한동철
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 1997
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindles require non-contact type sealing mechanism. In this study, an optimum seal design to minimize leakage is concerned in the aspect of flow control. This paper categorizes geometries of mostly used non-contact type seals and analyzes each leakage characteristics to minimize a leakage on sealing area. Effect of minimum clearance and its position are considered according to variation of detail geometry. The estimation of non-leaking property is determined by amount of pressure drop in the leakage path assuming constant leakage flow. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. Design parameters has been induced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted.