• Title/Summary/Keyword: non-metal

Search Result 1,695, Processing Time 0.033 seconds

Design of Broadband Spiral Antenna for Non-Linear Junction Detector (비선형 소자 탐지용 광대역 스파이럴 안테나의 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik;Lee, Kwang-Kun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • This paper presents a design of spiral antenna with broad bandwidth for non-linear junction detector(NLJD). An elliptical patch as radiating element located on center position of radiating surface, as well as the spiral elements on radiating surface was designed for broad bandwidth of spiral antenna. An antenna ground structure generating the multi resonance by spiral slit inserted on ground surface was also proposed. In order to realize high directivity and high gain of the proposed antenna, the cavity wall made of Fr4-epoxy and the metal cap were considered in design. As a result, the calculated gain of antenna with metal cap was improved about 3 dB with comparison of antenna without metal cap and the measured main beam directivity toward -z axis direction agreed well with calculation result. The measured axial ratio satisfied the circular polarization within -z axis ${\pm}45^{\circ}$ at design frequency bands and showed reasonable agreement with prediction.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

  • Jang, Dae-Eun;Lee, Ji-Young;Jang, Hyun-Seon;Lee, Jang-Jae;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • PURPOSE. The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS. Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS. All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION. Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed.

Changes in pre-osteoblast cells associated with non-precious metal cores with dental implants: Pilot test (치과용 임플란트 적용 비귀금속 코어와 관련된 전조골세포의 변화)

  • Park, Jung-Hyun;Kang, Seen-Young;Kim, Jong-Woo;Kim, Jang-Ju;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the non-precious metal core materials used in the dental laboratory to fabricate the implant superstructure by CAD / CAM method. And to observe and compare the morphology and distribution of the osteoblasts in relation to implant osseointegration. Methods: In this study, the mandibular right first molar tooth model was selected as an international standard to produce a single core. Using this model, the impression was made with the silicone rubber, the tooth model was scanned, and a single core was designed and 5-axis milling was performed. The materials used were Cobalt-Chromium and Nickel-Chromium, and the cores for dental implant top structures were fabricated according to the procedures of the dental labs. After the fabrication, the marginal area of the core was separated and cell culture experiment was performed. The osteoblast cells used MC3T3-E1, which is currently widely used. For morphological analysis of osteoblasts, cells were posttreated and observed using CLSM (Confocal Laser Scanning Microscope) and compared. Results: The cell adhesion behavior of the specimen surface measured by CLSM was uniformly distributed in specimen A (Cobalt-Chromium) than in specimen B (Nickel-Chromium). The distribution and changes of the cells were different in the two specimens. Conclusion : It is possible to confirm that specimen A (Cobalt-Chromium) is suitable for the living body through adhesion and proliferation of osteoblasts related to implant osseointegration in the non-precious metal superstructure used after implantation. It is considered that it is preferable to use Co-Cr when fabricating the superstructure.

A Study on the Non-Contact Detection Technique of Defects Using AC Current - The Influence of Frequency and lift-off - (교류전류를 이용한 비접촉결함탐상법에 관한 연구 - 주파수 lift-off의 영향 -)

  • Kim, Hoon;Na, Eu-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • New nondestructive inspection (NDI) technique to detect the defect in metal was developed in which an electromagnetic field is induced in a metal by AC current flowing in the magnetic coil and the leak magnetic-flux disturbed by defects is measured using a tape-recorder head with air gap. This technique can be applied in evaluating the location and sizing of surface defects in components of the ferromagnetic body by means of the non-contacting measurement. In this paper, we have applied this technique to the evaluation of two-dimensional surface cracks in ferromagnetic metal, and also investigated the influence of the various frequencies and lift-off. Defects were detected with maximum values in the distribution of voltage and it was found that the maximum values tend to increase with the defect depth. Although the maximum values for defects are affected by the frequency and lift-off, the depth of small defects can be estimated from the linear relationship between the depth and voltage rate$(V_0/V_{ave})$.

A novel fully covered metal stent for unresectable malignant distal biliary obstruction: results of a multicenter prospective study

  • Arata Sakai;Atsuhiro Masuda;Takaaki Eguchi;Keisuke Furumatsu;Takao Iemoto;Shiei Yoshida;Yoshihiro Okabe;Kodai Yamanaka;Ikuya Miki;Saori Kakuyama;Yosuke Yagi;Daisuke Shirasaka;Shinya Kohashi;Takashi Kobayashi;Hideyuki Shiomi;Yuzo Kodama
    • Clinical Endoscopy
    • /
    • v.57 no.3
    • /
    • pp.375-383
    • /
    • 2024
  • Background/Aims: Endoscopic self-expandable metal stent (SEMS) placement is currently the standard technique for treating unresectable malignant distal biliary obstructions (MDBO). Therefore, covered SEMS with longer stent patency and fewer migrations are required. This study aimed to assess the clinical performance of a novel, fully covered SEMS for unresectable MDBO. Methods: This was a multicenter single-arm prospective study. The primary outcome was a non-obstruction rate at 6 months. The secondary outcomes were overall survival (OS), recurrent biliary obstruction (RBO), time to RBO (TRBO), technical and clinical success, and adverse events. Results: A total of 73 patients were enrolled in this study. The non-obstruction rate at 6 months was 61%. The median OS and TRBO were 233 and 216 days, respectively. The technical and clinical success rates were 100% and 97%, respectively. Furthermore, the rate of occurrence of RBO and adverse events was 49% and 21%, respectively. The length of bile duct stenosis (<2.2 cm) was the only significant risk factor for stent migration. Conclusions: The non-obstruction rate of a novel fully covered SEMS for MDBO is comparable to that reported earlier but shorter than expected. Short bile duct stenosis is a significant risk factor for stent migration.

The Study on Mechanical Properties and Formability of Non-Heat-Treated and Heat-Treated Cold Forging Materials (냉간 가공시 조질 및 비조질강의 성형성과 기계적성질의 비교 연구)

  • 이영선;이정환;이상용;강종훈;김주현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.224-230
    • /
    • 1998
  • Non-heat-treated type material has been investigated for formability compared to heat-treated material. It is very important in automation of metal forming, since it has difficulties of controlling heat treating system by the computer and has bottle neck problem related with heat treatment. In this paper, we have concerned about mechanical properties of non-heat-treated material after the forging. To compare the characteristics between heat-treated material and non-heat-treated material, tensile, compression and fatigue test has been performed. Considering results of mechanical properites of non-heat-treated material, it can replace heat-treated material. Therefore non-heat-treated material may be applied to cold forging.

  • PDF

Offsetting Operations in Non-manifold Geometric Modeling (비다양체 모델의 옵셋 기능 개발)

  • 이상헌
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • This paper introduces non-manifold offsetting operations, which add or remove a uniform thickness from a given non-manifold model. Since these operations can be applied to not only solids but also wireframe or sheet objects, they are potentially useful for pipeline modeling, sheet metal and plastic part modeling, tolerance analysis, clearance checking, constant-radius rounding and filleting of solids, converting of abstracted models to solids, HC too1 path generation and so on. This paper describes mathematical properties and algorithms for non-manifold offsetting. In this algorithm, a sufficient set of tentative faces are generated first by offsetting all or a subset of the vertices, edges and faces of the non-manifold model. And then they are merged into a model using the Boolean operations. Finally topological entities which are within offset distance are removed. The partially modified offsetting algorithms for wireframes or sheets are also discussed in order to provide more practical offset models.

  • PDF

The Study on the Mechanical Properties and Formability of Non-Heat-Treated Cold Forging Steels (냉간 단조용 비조질강의 성형성과 기계적성질 연구)

  • Lee, Yeong-Seon;Lee, Jeong-Hwan;Lee, Sang-Yong
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.530-538
    • /
    • 1998
  • Elimination of the heat treatment process is very important in automation of metal forming since controlling heat treatment by computer has many difficulties and it has bottle neck problem. non-heat-treated steels materials which are not in need of heat treatment have been developed for cold forging. However to apply non-heat-treated steel to structural parts. it is necessary to prove reliability of mechanical properties. In order to define the reliability of mechanical properties we have investigated microstructure, hardness, the tensile strength compressive strength and tensile fatigue strength for both steels. Considering the results of high cycle fatigue test for both specimen the characteristics of non-heat-treated steel are decided on the yield strength, It has same tendency for heat-treated steel. Therefore non-heat-treated steel which has the appropriate yield strength may be applied in cold forging.

  • PDF

Control the stability of small-scale non-uniform structures via neural networks applied to partial differential equations

  • Xiaoqi Sun
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.351-367
    • /
    • 2024
  • This research uses a numerical technique and a neural network process to investigate the stability management of non-uniform cylindrical constructions with varying sizes. The non-uniform or truncated conical shapes vary in axial length. This complicated geometry results in partial differential equations in the mathematical explanation of stability performance. Furthermore, material distributions vary in the radial direction in functionally graded materials such as metal and ceramic. The governing equations are obtained from beam theory using the energy technique and non-classical size-dependent theory, respectively. These equations are then solved using both a numerical and neural network methodology. This research can potentially be utilized in nanotechnology to build and evaluate size-dependent non-uniform cylindrical structures. As a consequence, it will help to develop sophisticated nanoscale materials and architectures.