• Title/Summary/Keyword: non-metal

Search Result 1,684, Processing Time 0.032 seconds

Module Design and Performance Evaluation of Surge Arrester for Loading In Railway Rolling Stock (전철 탑재형 피뢰기의 모듈설계 및 성능평가기술)

  • Cho, H.G.;Kim, S.S.;Han, S.W.;Lee, U.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2038-2040
    • /
    • 2000
  • The main objective of this paper is to design and test a new type of polymer ZnO surge arrester for AC power system of railroad vehicles. Metal oxide surge arrester for most electric power system applications, electric train and subway are now being used extensively to protect overvoltage due to lightning. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of ZnO elements in a surge arrester occurs due to flashover, fault short current flows through the arrestor and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock, pressure rise. etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion. The main research works are focused on the structure design by finite element method, pressure relief of module, and studies of performance of surge arrester for electric railway vehicle.

  • PDF

Size Effect of Concrete Structures without Initial Cracks (초기균열이 없는 콘크리트 구조물의 크기에 따른 응력감소효과에 관한 연구)

  • Kim, Jin Keun;Park, Hong Kyee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 1987
  • In most of the structural members with initial cracks, the strength tends to decrease as the member size increases. This phenomenon is known as size effect. Among the structural materials of glass, metal or concrete, etc., concrete represents the size effect even without initial crack. According to the previous size effect law, the concrete member of very large size can resist little stress. Actually, however, even the large size member can resist some stress if there is no initial notch. This means that the fracture mechanism of very small or very large size member follows strength criterion, but the medium size member follows non-linear fracture mechanics (NLFM). In this study, the empirical models which are derived based on nonlinear fracture mechanics are proposed according to the regression analysis with the existing test data of large size specimens for uni-axial compression test, splitting tensile test and shear test of reinforced concrete beams.

  • PDF

Optical Diagnostic Study for Flame Characteristic Analysis in Aluminum Dust Clouds (알루미늄 군입자 화염특성 분석을 위한 광학기법 연구)

  • Lee, Sanghyup;Ko, Taeho;Lim, Jihwan;Lee, Dohyung;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.47-53
    • /
    • 2013
  • In this study, In order to develop the measurement method of high energy density metal aluminum dust cloud combustion, flame temperature and emission spectrum was measured using spectrometer. Because of the ultra high ${\mu}m$-sized aluminum flame temperature more than 2400 K, it was measured by non-contact optical technique which is the modified two wavelength pyrometry with 520, 640 nm and spectrum comparison method. These methods were applied to experiment after accurate verification. As a result, we could identify that flame temperature is more than 2400 K in bottom of combustor in both methods. And on the emission spectrum analysis, we could measure AlO radical which is occurred dominantly in aluminum combustion.

Large deflection behavior and stability of slender bars under self weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney;Pamplona, Djenane
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.709-725
    • /
    • 2006
  • In this paper the buckling and post-buckling behavior of slender bars under self-weight are studied. In order to study the post-buckling behavior of the bar, a geometrically exact formulation for the non-linear analysis of uni-directional structural elements is presented, considering arbitrary load distribution and boundary conditions. From this formulation one obtains a set of first-order coupled nonlinear equations which, together with the boundary conditions at the bar ends, form a two-point boundary value problem. This problem is solved by the simultaneous use of the Runge-Kutta integration scheme and the Newton-Raphson method. By virtue of a continuation algorithm, accurate solutions can be obtained for a variety of stability problems exhibiting either limit point or bifurcational-type buckling. Using this formulation, a detailed parametric analysis is conducted in order to study the buckling and post-buckling behavior of slender bars under self-weight, including the influence of boundary conditions on the stability and large deflection behavior of the bar. In order to evaluate the quality and accuracy of the results, an experimental analysis was conducted considering a clamped-free thin-walled metal bar. As this kind of structure presents a high index of slenderness, its answers could be affected by the introduction of conventional sensors. In this paper, an experimental methodology was developed, allowing the measurement of static or dynamic displacements without making contact with the structure, using digital image processing techniques. The proposed experimental procedure can be used to a wide class of problems involving large deflections and deformations. The experimental buckling and post-buckling behavior compared favorably with the theoretical and numerical results.

Substituent Effect on the Structure and Biological Property of 99mTc-Labeled Diphosphonates: Theoretical Studies

  • Qiu, Ling;Lin, Jian-Guo;Gong, Xue-Dong;Cheng, Wen;Luo, Shi-Neng
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4084-4092
    • /
    • 2012
  • Theoretical calculations based on density functional theory (DFT) were performed to study the substituent effect on the geometric and electronic structures as well as the biological behavior of technetium-99m-labeled diphosphonate complexes. Optimized structures of these complexes are surrounded by six ligands in an octahedral environment with three unpaired 4d electrons ($d^3$ state) and the optimized geometry of $^{99m}Tc$-MDP agrees with experimental data. With the increase of electron-donating substituent or tether between phosphate groups, the energy gap between frontier orbitals increases and the probability of non-radiative deactivation via d-d electron transfer decreases. The charge distribution reflects a significant ligand-to-metal electron donation. Based on the calculated geometric and electronic structures and biologic properties of $^{99m}Tc$-diphosphonate complexes, several structure-activity relationships (SARs) were established. These results may be instructive for the design and synthesis of novel $^{99m}Tc$-diphosphonate bone imaging agent and other $^{99m}Tc$-based radiopharmaceuticals.

THE INFLUENCE OE BALANCING SIDE OCCLUSAL INTERFERENCE ON THE MASTICATORY MUSCLE ACTIVITY AND CONDYLAR PATH (균형측 교합장애가 저작근 활성도 및 과로에 미치는 영향에 관한 연구)

  • Jin, Tai-Ho;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.103-121
    • /
    • 1989
  • The purpose of this study was to investigate the influence of balancing interference on the activity of masticatory muscles and condylar path. Eight dental students of Won Kwang University without any symptoms of temporomandibular disorder and occlusal interferences, were selected for this study, The balancing interference was provided by construction and cementation of cast metal crowns on the upper and lower first molars. For the measurement of muscle activity, bioelectric processor (EM2, Myotronic Res., Inc., U.S.A.) was used and for the condular path, computerized electronic pantograph (Pantronics, Denar Corp., U.S.A.) was used and the myographic recordings were taken bilaterally from the anterior temporal, masseter and digastric muscles on rest position and on functions. These experimental procedures were done before cementation of experimental crown, three days after cementation of experimental crown, one week after, two weeks after and then one week after removal of experimental crown. The results are as follows: 1. The PRI score was increased at three days after application of balancing interference, and decreased at two weeks after. 2. Three subjects showed mild symptom of temporomandibular disorder at three or four days after application of interference, but the symptom was subsided in one or two weeks after application of interference. 3. One week after application of balancing interference, the activity of ipsilateral anterior temporal muscle in four subjects was decreased on gum chewing at experimental site. 4. Three days after application of balancing interference, the activity of ipsilateral anterior temporal muscle in three subjects was increased on gum chewing at non-experimental site. 5. The influence of balancing interference on the activity of anterior temporal, masseter and gigastric muscle was not prominent.

  • PDF

Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles (탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성)

  • Kim, Hyung-Kun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

Fabrication of Mo Nano Patterns Using Nano Transfer Printing with Poly Vinyl Alcohol Mold (Poly Vinyl Alcohol 몰드를 이용한 Nano Transfer Printing 기술 및 이를 이용한 Mo 나노 패턴 제작 기술)

  • Yang, Ki-Yeon;Yoon, Kyung-Min;Han, Kang-Soo;Byun, Kyung-Jae;Lee, Heon
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.224-227
    • /
    • 2009
  • Nanofabrication is an essential process throughout industry. Technologies that produce general nanofabrication, such as e-beam lithography, dip-pen lithography, DUV lithography, immersion lithography, and laser interference lithography, have drawbacks including complicated processes, low throughput, and high costs, whereas nano-transfer printing (nTP) is inexpensive, simple, and can produce patterns on non-plane substrates and multilayer structures. In general nTP, the coherency of gold-deposited stamps is strengthened by using SAM treatment on substrates, so the gold patterns are transferred from stamps to substrates. However, it is hard to apply to transfer other metallic materials, and the existing nTP process requires a complicated surface treatment. Therefore, it is necessary to simplify the nTP technology to obtain an easy and simple method for fabricating metal patterns. In this paper, asnTP process with poly vinyl alcohol (PVA) mold was proposed without any chemical treatment. At first, a PVA mold was duplicated from the master mold. Then, a Mo layer, with a thickness of 20 nm, was deposited on the PVA mold. The Mo deposited PVA mold was put on the Si wafer substrate, and nTP process progressed. After the nTP process, the PVA mold was removed using DI water, and transferred Mo nano patterns were characterized by a Scanning electron micrograph (SEM) and Energy Dispersive spectroscopy (EDS).

A Study of Optimum Shielding Gas Flow Rate in FCAW for Shipbuilding (선박조립과정의 FCAW 적용시 적정 보호가스 유량에 대한 연구)

  • Lee, Hoon-Dong;Shim, Chun-Sik;Song, Ha-Cheol;Yum, Jae-Seon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • FCAW(Flux Cored Arc Welding) is a widely used welding method in shipbuilding. It also conducts WPS(Welding Procedure Specification) requested by the classification variations of the factors which affect the quality on the welded area such as thickness of base metal, type of welding wire and shielding gas etc. which has to be satisfied. CO2 is commonly used as a shielding gas for FCAW due to the economic point of view. The amount of shielding gas is stated when classification certify WPS. However, the shielding gas is unnecessarily used at the shipyard leaning only on the welder's experience as there are classification standards for using the shielding gas. It causes production cost to rise. Also recently, CO2 is a main contributor for global warming, and large amounts of CO2 are discharged into the atmosphere during shipbuilding processes without any filtration. Therefore it was confirmed by the security of the welded area as a result of conducting the destructive and non-destructive tests with setting up the factors and the standards by using the Taguchi method. Then the FCAW shielding gas's amounts were calculated precisely when assembling a ship. It will be applied to cost reduction and prevention of environmental pollution at the shipyard.

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.