• 제목/요약/키워드: non-linear viscoelastic behaviour

검색결과 3건 처리시간 0.018초

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • 제12권4호
    • /
    • pp.297-313
    • /
    • 2023
  • This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.35-42
    • /
    • 2007
  • The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

Earthquake-induced pounding between the main buildings of the "Quinto Orazio Flacco" school

  • Fiore, Alessandra;Monaco, Pietro
    • Earthquakes and Structures
    • /
    • 제1권4호
    • /
    • pp.371-390
    • /
    • 2010
  • Historical buildings in seismically active regions are severely damaged by earthquakes, since they certainly were not designed by the original builders to withstand seismic effects. In particular the reports after major ground motions indicate that earthquake-induced pounding between buildings may lead to substantial damage or even collapse of colliding structures. The research on structural pounding during earthquakes has been recently much advanced, although most of the studies are conducted on simplified single degree of freedom systems. In this paper a detailed pounding-involved response analysis of three adjacent structures is performed, concerning the main bodies of the "Quinto Orazio Flacco" school. The construction includes a main masonry building, with an M-shaped plan, and a reinforced concrete building, separated from the masonry one and realized along its free perimeter. By the analysis of the capacity curves obtained by suitable pushover procedures performed separately for each building, it emerges that masonry and reinforced concrete buildings are vulnerable to earthquake-induced structural pounding in the longitudinal direction. In particular, due to the geometric configuration of the school, a special case of impact between the reinforced concrete structure and two parts of the masonry building occurs. In order to evaluate the pounding-involved response of three adjacent structures, in this paper a numerical procedure is proposed, programmed using MATLAB software. Both a non-linear viscoelastic model to simulate impact and an elastic-perfectly plastic approximation of the storey shear force-drift relation are assumed, differently from many commercial softwares which admit just one non-linearity.