• 제목/요약/키워드: non-irrigation and irrigation period

검색결과 55건 처리시간 0.027초

농촌유역에서의 오염부하특성 (Characteristics of Pollutant Loadings in a Rural Watersheds)

  • 조재원;김진수;오광영
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.449-452
    • /
    • 2002
  • Characteristics of pollutant load during irrigation and non-irrigation periods was investigated for streamwater from a rural watershed. Water was sampled and discharge was measured at 5-days intervals at outlet of study area. The mean concentrations of TN and TP in an irrigation period are higher than in an non-irrigation period, while mean COD concentration in an irrigation period is lower than in a non-irrigation period. For increasing discharge during an irrigation period, TN concentration increase, TP concentration is nearly unchanged, and COD concentrations decreases.

  • PDF

RCP 시나리오 기반 비관개기 강수량을 고려한 농업용 저수지의 용수공급 확률 분석 (Analysis of Water Supply Probability for Agricultural Reservoirs Considering Non-irrigation Period Precipitation using RCP Scenarios)

  • 방재홍;최진용;이상현
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.63-72
    • /
    • 2018
  • The main function of an agricultural reservoir is to supply irrigation water to paddy rice fields in South Korea. Therefore, the operation of a reservoir is significantly affected by the phenology of paddy rice. For example, the early stage of irrigation season, a lot of irrigation water is required for transplanting rice. Therefore, water storage in the reservoir before irrigation season can be a key factor for sustainable irrigation, and it becomes more important under climate change situation. In this study, we analyzed the climate change impacts on reservoir storage rate at the beginning of irrigation period and simulated the reservoir storage, runoff, and irrigation water requirement under RCP scenarios. Frequency analysis was conducted with simulation results to analyze water supply probabilities of reservoirs. Water supply probability was lower in RCP 8.5 scenario than in RCP 4.5 scenario because of low precipitation in the non-irrigation period. Study reservoirs are classified into 5 groups by water supply probability. Reservoirs in group 5 showed more than 85 percentage probabilities to be filled up from half-filled condition during the non-irrigation period, whereas group 1 showed less than 5 percentages. In conclusion, reservoir capacity to catchment area ratio mainly affected water supply probability. If the ratio was high, reservoirs tended to have a low possibility to supply enough irrigation water amount.

논에서 강우에 의한 질소와 인산의 유출특성 (Runoff Characteristics of N and P by Rainfall in Paddy Field)

  • 조재영;최진규;손재권;한강완
    • Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.285-290
    • /
    • 2000
  • 본 연구는 논에서 강우에 의한 질소와 인산의 유출특성을 조사하였다. 이를 위하여 농업이외의 오염원이 비교적 적은 전라북도 진안군 마령면 평지리 일대 $5,000\;m^2$의 논을 시험포장으로 선정하여 1997년 5월 1일부터 1998년 4월 30일까지 12개월 동안 유출수 중 질소와 인의 시기별 함량변화 및 논에서의 유출수문 자료를 수집하였다. 논에서의 평균 유효유량은 관개기간 동안에 77.0 mm, 비관개기간 동안에는 21.2 mm로 나타났으며, 초기유출우량은 관개기간 동안 6.3-33.7 mm의 범위로 평균 12.9 mm, 비관개기간 동안 5.9-12.5 mm의 범위로 평균 9.2 mm로 산정되었다. 유출계수는 관개기간 중 0.59-1.36, 비관개기간 동안에는 0.57-0.86의 범위를 나타내었다. 관개기간과 비관개기간 사이에 영양물질의 유출특성에 차이가 없는지를 조사한 결과, 질소원과 인산원은 시기별로 유출량의 차이가 나타나지 않은 반면, 부유물질은 시기별로 차이를 나타내고 없었다. 논에서 강우-유출 중 발생하는 유출수량을 이용한 유출부하량 예측 결과, 질소원은 유출부하량 예측이 가능하였지만, 입자태 성분의 형태로 유출이 발생하는 부유물질과 전인은 약간의 오차가 발생하였다.

  • PDF

관개기 곡간지 유역 필지논에서의 비점원오염물질 유출특성 (Characteristics of Non-Point Sources Pollutant Loads at Paddy Plot Located at the Valley Watershed during Irrigation Periods)

  • 한국헌
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.94-102
    • /
    • 2011
  • The aim of this study was to evaluate the load of non-point sources pollutant at a paddy plot located at the valley watershed during irrigation period. Irrigation, runoff and water quality data in the paddy plot were analyzed periodically from June 1 to October 31 in 2005. The observed amount of precipitation, irrigation, runoff for the experimental paddy plot during the irrigation period was 1,297.8, 223.2, and 825.4mm, respectively. Total-N concentrations ranged from 3.73 to 18.10mg/L, which was generally higher than the quality standard of agricultural water (1.0mg/L). Total-P concentrations ranged from 0.111 to 0.243mg/L and the average was 0.139mg/L. The observed runoff pollutants loadings from the paddy plot were measured as 34.4 kg/ha for T-N, 1.0 kg/ha for T-P and 213.8 kg/ha for SS. The non-point sources pollutant load in drainage water depends on rainfall and surface drainage water amount from the paddy plot. We are considering that these results were affected by rainfall as well as hydrological condition, soil management, whether or not fertilizer application, cropping, rice straw and plowing.

  • PDF

RCP 시나리오에 따른 비관개기 누적강수량을 고려한 둑높이기 저수지의 미래 가뭄대응능력 평가 (Evaluation of Reservoir Drought Response Capability Considering Precipitation of Non-irrigation Period using RCP Scenario)

  • 방재홍;이상현;최진용;이성학
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.31-43
    • /
    • 2017
  • Recent studies about irrigation water use have focused on agricultural reservoir operation in irrigation period. At the same time, it is significant to store water resource in reservoir during non-irrigation period in order to secure sufficient water in early growing season. In this study, Representative Concentration Pathways (RCP) 4.5, 8.5 scenarios with the Global Climate Model (GCM) of The Second Generation Earth System Model (CanESM2) were downscaled with bias correlation method. Cumulative precipitation during non-irrigation season, October to March, was analyzed. Interaction between cumulative precipitation and carry-over storage was analyzed with linear regression model for ten study reservoirs. Using the regression model, reservoir drought response ability was evaluated with expression of excess and deficiency. The results showed that future droughts will be more severe than past droughts. Especially in case of non-exceedance probability of 10%, drought in southern region seemed to be serious. Nine study reservoirs showed deficiency range from 10% to 55%, which turned out to be vulnerable for future drought. Only Jang-Chan reservoir was secure for early growing season in spite of drought with deficiency of 8% and -2%. The results of this study represents current agricultural reservoirs have vulnerability for the upcoming drought.

평상시 농촌유역에서의 오염물질의 농도특성 (Characteristics of Concentration of Pollutants from a Rural Watersheds during Dry Days)

  • 오광영;김진수;간종범;조재원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.395-398
    • /
    • 2004
  • Characteristics of concentration of pollutants such as total nitrogen(T-N), total phosphorus(T-P) and chemical oxygen demand(COD) during dry days of $2002\~2003$ were investigated for streamwater from a rural watershed. Water was sampled and discharge was measured at 5-days intervals at outlet of study area. The mean concentrations of pollutants in non-irrigation and irrigation period not significantly different. For increasing discharge in 2002, TN concentration increased but COD concentrations decreases.

  • PDF

지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구 (Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods)

  • 한욱동
    • 한국농공학회지
    • /
    • 제16권1호
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

개발초기 간척답의 관개용수량 산정에 관한 연구 (Irrigation Water Requirements of Unripened Reclaimed Paddy Fields)

  • 손재권;구자웅;최진규
    • 농촌계획
    • /
    • 제8권1호
    • /
    • pp.26-40
    • /
    • 2002
  • In order to plan the effective irrigation project in unripened reclaimed paddy fields, the estimation of criteria of irrigation water requirements for the normal growth of crops is very important. This study was carried out to determine the leaching requirements before cultivating crops, the consumptive use of water by the growth of crops, and preventive water requirements of resalinization during the growth period in unripened reclaimed paddy fields. The irrigation water requirements in good permeable soils were estimated as 2,530mm for culvert treatment(S1CW3) and 3,080mm for non-culvert treatment(S1NW4), which were 1.8 times and 2.4 times as high as the irrigation water requirements in common rice fields, respectively. And, in case of poor permeable soils, 3,360mm for culvert treatment(S2CW4) and 3.580mm for non-culvert treatment(S2NW4) were estimated, which were 2.5 times and 2.8 times higher than the normal irrigation water requirements, respectively.

새만금유역의 수질을 고려한 환경유지용수의 시나리오 분석 (Analysis of Scenarios for Environmental Instream Flow Considering Water Quality in Saemangeum Watershed)

  • 김세민;박영기;원찬희;김민환
    • 대한환경공학회지
    • /
    • 제38권3호
    • /
    • pp.117-127
    • /
    • 2016
  • 새만금유역을 대상으로 수질개선을 위한 다양한 방법을 검토하고 환경유지용수 확보에 따른 수질개선 효과를 평가하였다. 만경강과 동진강의 환경유지용수 확보를 위해 강변저류지설치, 저수지증고, 신규댐 건설, 용수 취배수체계 조정, 용담댐, 섬진강댐 물 이용체계를 조정하는 방안을 선정하였다. 환경유지용수 확보 가능한 방안에 따른 시나리오 구성을 통해 수질개선효과를 예측하기 위하여 유역모형 SWAT과 수질모델 QUAL2K를 연계하여 BOD와 T-P항목에 대해 수질변화를 모의하였다. 시나리오 적용을 통한 모의 결과 총량관리단위유역말단인 만경B 지점의 경우 관개기 BOD 수질개선율은 28.70%, T-P의 수질개선율은 17.09%로 나타났고, 비관개기BOD 수질개선율은 28.51%, T-P의 수질개선율은 28.68%로 나타났다. 동진 A 지점의 경우 관개기 BOD 수질개선율은 14.39%, T-P 수질개선율은 14.59%, 비관개기 BOD 수질개선율은 15.54%, T-P 수질 개선율은 19.46 %로 나타나 환경유지용수가 수질개선에 효과가 있는 것으로 분석되었고 특히, 비관개기 수질개선에 효과가 크다는 것을 알 수 있었다.