• Title/Summary/Keyword: non-intrusive measurement

Search Result 42, Processing Time 0.021 seconds

Improvement of Calibration Method of Thermochromic Liquid Crystal Reflecting Measurement Angle (측정각도를 고려한 액정교정기법의 개선)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Woo, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.188-194
    • /
    • 2000
  • Thermochromic liquid crystal reflect a unique color at even temperature. Therefore, they have been successfully applied to non-intrusive heat transfer research. Hue capturing method is widely used in the quantitative measurement from the TLC image. However it is affected by several measurement conditions. The distances of camera and light source have little influence on the color, but the value of hue is seriously affected by the measurement angle. In this study, the hue capturing method is improved by considering the effect of measurement angle. This improved calibration method can diminish the misreading of temperature caused by curvature of test surface.

Temperature measurement of the spray flame using micro scale absorption bands and line strength (마이크로 스케일의 흡수선과 흡수강도를 이용한 분무화염의 온도측정)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • It is necessary to develope a high frequency diode laser sensor system based on the absorption spectroscopy for the measurement of temperature of the spray flame. DFB diode laser operating near $2.0{\mu}m$ was used to scan over selected $H_2O$ transitions near $1.9{\mu}m\;and\;2.2{\mu}m$, respectively. The measurement sensitivity at wide range of sweep frequency was evaluated using multi-pass cell containing $CO_2$ gas. This diode laser absorption sensor with high temporal resolution up to 10kHz was applied to measure the gas temperature in the spray flame region of liquid-gas 2-phase counter flow flame. The successful demonstration of time series temperature measurement in the spray flame gives us motivation of trying to establish non-intrusive temperature measurement method in the practical spray flame.

  • PDF

A Study on Pulse Measurement of Toe Using Photoplethysmography (광전용적맥파를 이용한 발가락에서의 맥박측정에 관환 연구)

  • Jung, In-Bok;Kim, Kyung-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.353-354
    • /
    • 2013
  • 본 논문에서는 기존의 손에서 측정하는 PPG를 발가락에서 측정하여 지속적인 무자각적 측정이 가능함을 제안한다. 발가락에서의 측정은 손이 자유로워져 일상 업무에 영향을 끼치지 않으면서 고정하기 유용하기 때문에 보다 상황에 맞는 정확한 파형 검출이 가능하다. 따라서 본 논문에서는 발가락에서의 측정 가능성을 확인한 후 소형 device 제작 및 실험을 통해 손과 발에서 PPG를 측정, 비교하여 발가락에서도 PPG 파형 검출이 가능함을 보인다.

  • PDF

A Study on Urination Amount Estimation for the Male by the Measurement of Body Weight Difference (체중 변화 측정을 통한 남성 배뇨량 추정 방법 연구)

  • Lim, Yong-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.69-73
    • /
    • 2015
  • In this study, a method for estimating the amount of urination for men, was suggested and its performance was evaluated. This study is a preliminary one for the development of a health monitoring system that needs un-constraining, non-intrusive and long-term measurements in daily life. To estimate the amount of urination, a wide weighing plate with load cell was built and the difference in a man's weights between before and after urination was measured while he was standing on the plate. The results showed that the amount of urination can be estimated with the measured weight difference under the condition of mild movements. The largest measurement error of the suggested method was 40g, which means that this method can be applied to health monitoring in daily life. It is expected that the results of this study will be the basis for developing practical un-constraining and non-intrusive health monitoring system for daily use at home.

A Study of Biosignal Analysis System for Sensibility Evaluation (감성을 평가하기 위한 생체신호 분석 시스템에 관한 연구)

  • Lee, Ji-Hyeoung;Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.19-26
    • /
    • 2010
  • In this paper, we studied about the Embedded System of the biosignal measurement and analysis to sensibility evaluation in daily life for non-intrusive. This system is two kinds of measuring biosiganls(Electrocardiogram:ECG, Photoplethysmography:PPG) and analyzed by real-time wireless transmission to notebook PC using bluetooth for consistent and reliability of physiological way to assess continuously changing sensibility. Comparative studied of an autonomic nerve system activity ratio on characteristics frequency band of two kinds of biosignal analyzed frequency way using the Fast Fourier Transform(FFT) and Power Spectrum Density(PSD). Also the key idea of this system is to minimize computing of analysis algorithm for faster and more accurate to assess the sensibility, and the result of the visualization using graph. In this paper, we evaluated the analysis system to assess sensibility that measuring various situation in daily life using a non-intrusive biosignal measurement system, and the accuracy and reliability in comparison with difference of result by development analysis system.

Application of DFB Diode Laser Sensor to Reacting Flow (I) - Estimation and Application to Laminar Flames -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1550-1557
    • /
    • 2002
  • Diode laser sensor for measuring gas temperature and species concentration in combustion chamber was developed using 2.0 tim distributed feed back lasers. To evaluate the measurement sensitivity of diode laser sensor system, CO2 survey spectra near 2.0 Um were measured and compared with the calculated one. This diode laser absorption sensor was applied to measure gas temperatures in a premixed flat flame of CH$_4$-air mixture. Experimental results were in good agreement with the values by an R-type thermocouple within 6.12%. In addition, successful demonstration of measurement of gas temperature and species concentration in a soot flame showed the promising possibility of diode laser absorption sensors for practical combustion system with non-intrusive method.

Quality Level Classification of ECG Measured using Non-Constraint Approach (무구속적 방법으로 측정된 심전도의 신뢰도 판별)

  • Kim, Y.J.;Heo, J.;Park, K.S.;Kim, S.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.161-167
    • /
    • 2016
  • Recent technological advances in sensor fabrication and bio-signal processing enabled non-constraint and non-intrusive measurement of human bio-signals. Especially, non-constraint measurement of ECG makes it available to estimate various human health parameters such as heart rate. Additionally, non-constraint ECG measurement of wheelchair user provides real-time health parameter information for emergency response. For accurate emergency response with low false alarm rate, it is necessary to discriminate quality levels of ECG measured using non-constraint approach. Health parameters acquired from low quality ECG results in inaccurate information. Thus, in this study, a machine learning based approach for three-class classification of ECG quality level is suggested. Three sensors are embedded in the back seat, chest belt, and handle of automatic wheelchair. For the two sensors embedded in back seat and chest belt, capacitively coupled electrodes were used. The accuracy of quality level classification was estimated using Monte Carlo cross validation. The proposed approach demonstrated accuracy of 94.01%, 95.57%, and 96.94% for each channel of three sensors. Furthermore, the implemented algorithm enables classification of user posture by detection of contacted electrodes. The accuracy for posture estimation was 94.57%. The proposed algorithm will contribute to non-constraint and robust estimation of health parameter of wheelchair users.

Multi-phase Flow Velocity Measurement Technique using Shadow Graphic Images (다위상 유체 속도 계측을 위한 영상기법 적용)

  • Ryu, Yong-Uk;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.61-65
    • /
    • 2012
  • Air-water flow measurements are of importance for the coastal and ocean engineering fields. Although kinematic investigations of the multi-phase flows have been conducted for long time, velocity measurements still are concerned with many researchers and engineers in coastal and ocean areas. In the present study, an imaging technique using shadowgraphy and fiber optic probe for velocity measurements of air bubbles is introduced. The shadow graphy image technique is modified from the typical image velocimetry methods, and optical fibers are used for the well-known intrusive coupled phase-detection probe system. Since the imaging technique is a non-intrusive optical method from the air, it is usually applied for 2D flows. On the other hand, the double fiber optic probes touch flows regardless of flow patterns. The results of the flow measurements by both methods are compared and discussed. The methods are also applied to the measurements of overtopping flows by a breaking wave over the structure fixed on the free surface.

A Study on the Development of Measurement Techniques for Thermal Flows in MEMS

  • Ko Han-Seo;Yang Sang-Sik;Yoo Jai-Suk;Kim Hyun-Jung
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.387-395
    • /
    • 2006
  • A review on advanced flow visualization techniques is presented particularly for applications to micro scale heat and mass transport measurements. Challenges, development and applications of micro scale visualization techniques are discussed for the study of heating/evaporating thin films, a heated micro channel, and a thermopneumatic micro pump. The developed methods are (1) Molecular Tagging Fluorescence Velocimetry (MTFV) using 10-nm caged seeding molecules (2) Micro Particle Velocimetry (MPIV) and (3) Ratiometric Laser Induced Fluorescence (LIF) for micro-resolution thermometry. These three methods are totally non-intrusive techniques and would be useful to investigate the temperature and flow characteristics in MEMS. Each of these techniques is discussed in three-fold: (1) its operating principle and operation, (2) its application and measurement results, and (3) its future challenges.

Recovery Voltage Measurements of Oil-immersed Transformer

  • Li, Ming-Hua;Dong, Ming;Qu, Yan-Ming;Yan, Zhang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.230-234
    • /
    • 2006
  • One of the methods currently being investigated as a possible non-intrusive diagnostic tool for condition monitoring of power transformer and cable is the recovery voltage measurement, which will be improving the ability to detect the content of water concentration and the ageing process in the insulation system and may thus be an indicator of insulation quality and its ageing status. The polarization phenomenon was studied using RVM with oil-paper samples. In order to interpret its mechanism, the Extended Debye model was introduced. With different circuit parameters, various simulation results were gotten. Furthermore, with the test samples of different ageing condition, measurements are accomplished in the lab. On the basis of this experiment as well as theoretical analysis, correlations between polarizations and ageing were analyzed.