• Title/Summary/Keyword: non-equilibrium transport

Search Result 65, Processing Time 0.028 seconds

A study on the electron energy diffusion function of the sulphur hexaflouride ($SF_6$ 가스의 전자에너지 분포함수에 관한 연구)

  • 김상남;유회영;서상현;박동화;하성철
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.134-139
    • /
    • 1996
  • The electron energy distributions function were analysed in sulphur hexaflouride at E/N : 500~800(Td) for a case of non-equilibrium ion in the mean electron energy. This paper describes the electron transport characteristics in SF$_{6}$ gas calculated for range of E/N values from 150~800(Td) by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters. The results gained that the value of an electron swarm parameter such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N. The properties of electron avalanches in an electron energy non-equilibrium region.n.

  • PDF

NANOCAD Framework for Simulation of Quantum Effects in Nanoscale MOSFET Devices

  • Jin, Seong-Hoon;Park, Chan-Hyeong;Chung, In-Young;Park, Young-June;Min, Hong-Shick
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • We introduce our in-house program, NANOCAD, for the modeling and simulation of carrier transport in nanoscale MOSFET devices including quantum-mechanical effects, which implements two kinds of modeling approaches: the top-down approach based on the macroscopic quantum correction model and the bottom-up approach based on the microscopic non-equilibrium Green’s function formalism. We briefly review these two approaches and show their applications to the nanoscale bulk MOSFET device and silicon nanowire transistor, respectively.

A Study on the electron energy diffusion function of the sulphur hexaflouride (SF_6 가스의 전자에너지 분포함수에 관한 연구)

  • ;金相南
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.227-227
    • /
    • 1999
  • The electron energy distributions function were analysed in sulphur hexaflouride at E/N : 500~800(Td) for a case of non-equilibrium region in the mean electron energy. This paper describes the electron transport characteristics in $SF_6$ gas calculated for range of E/N values from 150~800(Td) by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters. The results gained that the value of ane1ctron swarm parameter such as the e1ectron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N. The properties of electron avalanches in an electron energy non-equilibrium region.

Double Gate MOSFET Modeling Based on Adaptive Neuro-Fuzzy Inference System for Nanoscale Circuit Simulation

  • Hayati, Mohsen;Seifi, Majid;Rezaei, Abbas
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.530-539
    • /
    • 2010
  • As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, quantum mechanical effects are expected to become more and more important. Accurate quantum transport simulators are required to explore the essential device physics as a design aid. However, because of the complexity of the analysis, it has been necessary to simulate the quantum mechanical model with high speed and accuracy. In this paper, the modeling of double gate MOSFET based on an adaptive neuro-fuzzy inference system (ANFIS) is presented. The ANFIS model reduces the computational time while keeping the accuracy of physics-based models, like non-equilibrium Green's function formalism. Finally, we import the ANFIS model into the circuit simulator software as a subcircuit. The results show that the compact model based on ANFIS is an efficient tool for the simulation of nanoscale circuits.

Binary Doping of N-B and N-P into Graphene and Graphene Nanoribbons: Structural, Electronic, and Transport properties

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.647-647
    • /
    • 2013
  • We apply a density functional theory (DFT) and DFT-based non-equilibrium Green's function approach to study the structures, energetics and charge transport characteristics of nitrogen-doped graphene and graphene nanoribbons (GNRs) with additional doping of phosphorus or boron atoms. Considering graphitic, pyridinic, and porphrin-like N doping sites and increasing N-doping concentration, we analyze the structures of N-P and N-B doped graphene and particularly focus on how they affect the charge transport along the lateral direction. For the GNRs, we also consider the differences between defects formed at the edge and bulk regions. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF

Transport properties of boron/nitrogen/phosphorus binary doped graphene nanoribbons: An ab initio study

  • Kim, Seong Sik;Kim, Han Seul
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.273-277
    • /
    • 2013
  • We apply a density functional theory (DFT) and DFT-based non-equilibrium Green's function approach to study the electronic and transport properties of graphene nanoribbons (GNRs) co-doped with boron-nitrogen, nitrogen-phosphorus and boron-phosphorus. We analyze the structures and charge transport properties of co-doped GNRs and particularly focus on the novel effects that are absent for the single N-, B-, or P-doped GNRs. It is found that co-doped GNRs tend to be doped at the edges and the electronic structures of co-doped GNRs are very sensitive to the doping sites. Also, in case of B-N and B-P co-doped GNRs, conductance dips of single-doped GNRs disappeared with the disappearance of localized states associated with doped atoms. This may lead to a possible method of band engineering of GNRs and benefit the design of graphene electronic devices.

  • PDF

Modeling As(III) and As(V) adsorption and transport from water by a sand coated with iron-oxide colloids

  • Ko, Il-Won;Lee, Cheol-Hyo;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.243-247
    • /
    • 2004
  • Tile development of a porous iron-oxide coated sand filter system can be modelled with the analytical solution of tile transport equation in order to obtain the operating parameters and investigate the mechanism of arsenic removal. The adsorbed amount from the model simulation showed the limitation of adsorption removal during arsenic transport. A loss reaction term in the transport equation plays a role in the mass loss in column conditions, and then resulted into the better model fitting, particularly, for arsenate. Further, the competitive oxyanions delayed the breakthrough near MCL (10 $\mu$g/L) due to the competitive adsorption. This is the reason why arsenate can be strongly attracted in tile interface of an iron-oxide coated sand, and competing oxyanions can occupy the adsorption sites. Therefore, arsenic retention was regulated by non-equilibrium of arsenic adsorption in a porous iron-oxide coated sand media. The transport-limited process seemed to be affect the arsenic adsorption by coated sand.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.50-57
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF