• Title/Summary/Keyword: non-digestible oligosaccharide

Search Result 5, Processing Time 0.017 seconds

The Effect of Bifidobacteria and Various Oligosaccharides Consumption on the Risk of Colon Cancer in Rats

  • Khil, Jin-Mo
    • Nutritional Sciences
    • /
    • v.8 no.4
    • /
    • pp.219-225
    • /
    • 2005
  • This study examined the effect of viable bifidobacteria and non-digestible carbohydrates on the cecal pH, colonic neoplastic lesion (aberrant crypt) and proliferating cell nuclear antigen (PCNA) labeling index in carcinogen-treated mts. Animals received s.c. injection of dimethylhydrazine (DMH) (15 mg/kg body weight) twice 3 days apart. Three days after the second carcinogen administration, the treatments were begun. 1he treatments were basal diet (AIN-76) with skim milk (Basal/skim), or the following diets with daily gavage of $10^8$ bifidobacteria: basal (Basal/bifido), $2\%$ fructo-oligosaccharide (FOS/bifido), $2\%$ soybean oligosaccharide (SBO/bifido), $2\%$ wheat bran oligosaccharide (WBO/bifido) and $8.4\%$ wheat bran (WB/bifido). After 4 weeks of treatment, cecal pH was measured using a pH probe. The number of aberrant crypt (AC), aberrant crypt foci (ACF) and crypt multiplicity were enumerated and colonic PCNA labeling index was determined using immunohistochemistry. Cecal pH was significantly reduced in SBO/bifido and FOS/bifido groups compared to control group. However, there were no significant differences in either number of AC or rates of cell proliferation as shown by PCNA labeling index among the groups, although mts fed FOS/bifido reduced the numbers of ACF compared to Basal/skim group. The SBO/bifido group did not reduce the number of ACF or PCNA labeling index. Also, other oligosaccharides did not reduce the risk of colon cancer compared to control group. The concomitant reduction of cecal pH and number of ACF suggest that the combination of bifidobacteria and FOS may reduce the risk of colon cancer.

Production and Application of Galacto-oligosaccharides from Lactose by a Recombinant $\beta$-Galactosidase of Bifidobacterium infantis Overproduced by Pichia pastoris

  • Jung, Sung-Je;Lee, Byong-Hoon
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.514-518
    • /
    • 2008
  • After overproduction of a recombinant $\beta$-galactosidase of Bifidobacterium infantis in Pichia pastoris, a synthesis of galacto-oligosaccharides (GOS) from 36% lactose using the enzyme (170.74 U/mg) was investigated. The transgalactosylation ratio reached up to 25.2% with 83.1% conversion of initial lactose and the maximum yield of GOS was 40.6%. The GOS syrup was composed of a 13.43% galacto-oligosaccharides, 5.06% lactose, and 8.76% monosaccharides. The prebiotic effect of GOS on the growth of bifidobacteria and lactobacilli strains was investigated in vitro. The maximum growth rate of Bifidobacterium breve and Lactobacillus acidophillus in GOS syrup (5%, v/v) media were 0.49 and 0.96/hr that are higher than those in 1%(w/v) galactose and 1%(w/v) lactose containing media. However, there was no significant difference between the specific growth rates of L. acidophillus in 1%(w/v) glucose and 5%(v/v) GOS syrup. Our data showed that GOS definitely promoted the growth of B. breve ATCC $15700^T$ and L. acidophilus ATCC 33323.

Dietary Fiber and Large Bowel Cancer

  • Oku, Tsuneyuki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.539-549
    • /
    • 1996
  • Large bowel cancer correlates tightly to dietary factors such as dietary fiber and fat. Dietary fiber prevents the large bowel cancer in different modes of action which depend upon physicochemical and fermentable properties. Water-soluble fiber is fermented easily by intestinal microbes producing short chain fatty acids ; in contrast, water-insoluble fiber occurs effectively more rapid transit time due to greater bulk of gut content, though it is unfermentable. Not only short chain fatty acid is utilized in the proximal and distal colon as primary energy source, but also it lowers pH in the colon to normalize cellular differentiation and helps to stimulate peri staltic movement by acting as an osmotic laxative. In particular, butyric acid may also regulate gene expression and cell growth, though it is an important respiratory fuel for the colonocyte. Since dietary fiber and non-digestible oligosaccharides are the major source of butyric acid, this provides a possible link between dietary fiber and oligosaccharide and prevention of large bowel cancer. But, as with many links between dietary fiber and large bowel cancer, a direct casual association has not been established. In addition, RDA of dietary fiber which is 20~25g/day for adult Japanese, appears to be reasonable for the defecation once daily and the prevention of large bowel cancer.

  • PDF

Synthesis of Galactooligosaccharides in the Cheese Whey-based Medium by a Lactase from Lactobacillus paracasei YSM0308

  • Song, Tae-Suk;Lee, Kyung-Sang;Kang, Seung-Bum;Yoo, Seong-Ho;Lee, Jong-Ik;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.33 no.5
    • /
    • pp.565-571
    • /
    • 2013
  • An enzyme ${\beta}$-galactosidase or ${\beta}$-galactohydrolase [EC3.2.1.23], commonly called lactase, mediates galacto-oligosaccharide (GOS) synthesis under conditions of high substrate concentrations. Also, lactase hydrolyzes ${\beta}$($1{\rightarrow}4$) lactose into glucose and galactose, the latter is successively transferred to free lactose to make various oligosaccharides via transgalactosylation. GOS is non-digestible to human digestive enzymes and has been used as a functional prebiotics. Among the 24 lactic acid bacteria (LAB) strains used, Lactobacillus paracasei YSM0308 was selected based on its exhibition of the highest ${\beta}$-galactoside hydrolysis activity, and the crude lactase was prepared for examination of reaction conditions to affect the GOS synthesis. Lactase activity was measured with a spectrophotometer using ONPG (o-nitropheyl ${\beta}$-D-galactopyranoside) method. Lactase activity was not detected in the culture supernatant and was mostly present in the cell pellet after centrifugation. Activity of the crude lactase preparation ranges from102 to 1,053 units/mL, with the highest activity determined for L. paracasei YSM0308. Optimal conditions for GOS synthesis are as follows: concentration of whey powder, pH, temperature, and time were 30%, pH 6.5-7.0, $30^{\circ}C$, and 4 h, respectively. The final GOS concentration was 19.41% (w/v) by the crude YSM0308 lactase, which was obtained from strain YSM0308 grown in the 10% (w/v) reconstituted whey-based medium.

Effects of Dietary Synbiotics from Anaerobic Microflora on Growth Performance, Noxious Gas Emission and Fecal Pathogenic Bacteria Population in Weaning Pigs

  • Lee, Shin Ja;Shin, Nyeon Hak;Ok, Ji Un;Jung, Ho Sik;Chu, Gyo Moon;Kim, Jong Duk;Kim, In Ho;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1202-1208
    • /
    • 2009
  • Synbiotics is the term used for a mixture of probiotics (live microbial feed additives that beneficially affects the host animal) and prebiotics (non-digestible food ingredients that beneficially affect the organism). This study investigated the effect of probiotics from anaerobic microflora with prebiotics on growth performance, nutrient digestibility, noxious gas emission and fecal microbial population in weaning pigs. 150 pigs with an initial BW of 6.80${\pm}$0.32 kg (20 d of age) were randomly assigned to 5 dietary treatments as follows: i) US, basal diet+0.15% antibiotics (0.05% oxytetracycline 200 and 0.10% tiamulin 38 g), ii) BS, basal diet+0.2% synbiotics (probiotics from bacteria), iii) YS, basal diet+0.2% synbiotics (probiotics from yeast), iv) MS, basal diet+0.2% synbiotics (probiotics from mold), v) CS, basal diet+0.2% synbiotics (from compounds of bacteria, yeast and mold). The probiotics were contained in $10^{9}$ cfu/ml, $10^{5}$ cfu/ml and $10^{3}$ tfu/ml of bacteria, yeast and molds, respectively. The same prebiotics (mannan oligosaccharide, lactose, sodium acetate and ammonium citrate) was used for all the synbiotics. Pigs were housed individually for a 16-day experimental period. Growth performance showed no significant difference between antibiotic treatments and synbiotics-added treatments. The BS treatment showed higher (p<0.05) dry matter (DM) and nitrogen digestibility while ether extract and crude fiber digestibility were not affected by the dietary treatment. Also, the BS treatment decreased (p<0.05) fecal ammonia and amine gas emissions. Hydrogen sulfide concentration was also decreased (p<0.05) in BS, YS and MS treatments compared to other treatments. Moreover, all the synbioticsadded treatments increased fecal acetic acid concentration while the CS treatment had lower propionic acid concentration than the US treatment (p<0.05) gas emissions but decreased in fecal propionate gas emissions. Total fecal bacteria and Escherichia coli populations did not differ significantly among the treatments, while the Shigella counts were decreased (p<0.05) in synbiotics-included treatment. Fecal bacteria population was higher in the YS treatment than other treatments (p<0.05). The BS treatment had higher yeast concentration than YS, MS and CS treatments, while US treatment had higher mold concentrations than MS treatment (p<0.05). Therefore, the results of the present study suggest that synbiotics are as effective as antibiotics on growth performance, nutrient digestibility and fecal microflora composition in weaning pigs. Additionally, synbiotics from anaerobic microflora can decrease fecal noxious gas emission and synbiotics can substitute for antibiotics in weaning pigs.