• 제목/요약/키워드: non-destructive testing ultrasound

검색결과 12건 처리시간 0.017초

합성곱 신경망과 초음파 기반 상수도관 수질 및 부식 분석용 이중모드 진단 시스템 (Dual-mode diagnosis system for water quality and corrosion in pipe using convolutional neural networks (CNN) and ultrasound)

  • 문소연;전현주;성영호 ;김민서;김대훈;최재엽;오정환;이오준;임해균
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.685-686
    • /
    • 2023
  • 상수도관의 수질 및 부식도 검사에는 파이프에 손상을 입히지 않고 지속적인 방법이 필요하다. 초음파는 이를 만족하면서 상태를 확인할 수 있고 주파수가 높을수록 해상도가 좋아져 정밀한 측정이 가능하다는 장점이 있다. 이러한 특성을 이용해 상수도관 모니터링 시스템으로 초음파 기반의 Scanning Acoustic Microscopy(SAM)과 Convolutional Neural Network(CNN)을 사용하는 새로운 방법을 제안한다. 기존의 Non-Destructive Testing(NDT)방식의 단점을 보완하면서 더 높은 해상도로 상수도관을 점검하는 방식으로, SAM 을 이용하여 부식으로 인한 파이프 두께 변화와 부유물의 여부 및 수질을 동시에 감지하고 얻은 데이터를 CNN 으로 분석했다. CNN 의 높은 정확도 결과로 이 시스템의 파이프 부식도 및 수질 모니터링에 대한 적합성을 보여주었다.

이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발 (Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance)

  • 엄기열;민병석
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.99-107
    • /
    • 2024
  • 경제성장과 산업 발전에 따라 반도체 제품부터 SMT 제품, 전기 배터리 제품에 이르기 까지 많은 전자통신 부품들의 제조과정에서 발생하는 철, 알루미늄, 플라스틱 등의 이물질로 인해 제품이 제대로 동작하지 않거나, 전기 배터리의 경우 화재를 발생하는 문제까지 심각한 문제로 이어질 가능성이 있다. 이러한 문제를 해결하기 위해 초음파나 X-ray를 이용한 비파괴 방법으로 제품 내부에 이물질이 있는지 판단하여 문제의 발생을 차단하고 있으나, X-ray 영상을 취득하여 이물질이 있는지 판정하는 데에도 여러 한계점이 존재한다. 특히. 크기가 작거나 밀도가 낮은 이물질들은 X-Ray장비로 촬영을 하여도 보이지 않는 문제점이 있고, 잡음 등으로 인해 이물들이 잘 안 보이는 경우가 있으며, 특히 높은 생산성을 가지기 위해서는 빠른 검사속도가 필요한데, 이 경우 X-ray 촬영시간이 짧아지게 되면 신호 대비 잡음비율(SNR)이 낮아지면서 이물 탐지 성능이 크게 저하되는 문제를 가진다. 따라서, 본 논문에서는 저화질로 인해 이물질을 탐지하기 어려운 한계를 극복하기 위한 5단계 방안을 제안한다. 첫번째로, Global 히스토그램 최적화를 통해 X-Ray영상의 대비를 향상시키고, 두 번째로 고주파 영역 신호의 구분력을 강화하기 위하여 Local contrast기법을 적용하며, 세 번째로 Edge 선명도 향상을 위해 Unsharp masking을 통해 경계선을 강화하여 객체가 잘 구분되도록 한다, 네 번째로, 잡음 제거 및 영상향상을 위해 Resdual Dense Block(RDB)의 초고해상화 방법을 제안하며, 마지막으로 Yolov5 알고리즘을 이용하여 이물질을 학습한 후 탐지한다. 본 연구에서 제안하는 방식을 이용하여 실험한 결과, 저밀도 영상 대비 정밀도 등의 평가기준에서 10%이상의 성능이 향상된다.