• Title/Summary/Keyword: non-destructive test(NDT)

Search Result 65, Processing Time 0.028 seconds

Latest Technology of Non Destructive Inspection for Welded Structure (용접구조물의 최신 비파괴 검사기술)

  • Kim, Youngsik;Kil, Sangcheol
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • As the Non Destructive Test (NDT) for the welded structure, PT(Penetration Test). MT(Magnetic Test), RT (Radioisotope Test) and UT(Ultrasonic Test) methods are widely used in practice. These NDT methods have been developed toward high efficiency, low cost, real time, and high precise new NDT. For example, RT methods are developed to CT(Computed Tomography)and DR(Digital Radiography), and UT metheds are developed into Phased array, Guide wave, TOFD method. Moreover, the Infrared thermography and Laser ultrasonic technique are newly developed for applying in high temperature objects as the non-contact NDT methods. In this review paper the new high efficiency NDT methods for the welded structure are introduced and the trend of NDT rules applying in welded structure are described.

Mobile NDT Inspection System Using Ultrasonic (초음파를 이용한 모바일 비파괴 검사 시스템)

  • Kwon, Seong-Geun;Lee, Suk-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.105-111
    • /
    • 2016
  • In order to inspect the quality of spot welding, inefficient destructive test and NDT (non destructive testing) utilizing expensive foreign ultrasonic inspection are being conducted in the automobile production lines, but NDT will be difficult to be used in the domestic automobile production due to complexity of the waveform analysis and lack of mobility. In this paper, NDT system inspecting the quality of spot welding based on mobile network is proposed to complement drawbacks of the conventional inefficient destructive testing and NDT inspecting the quality of spot welding. Regardless of daily condition of NDT tester, the proposed NDT system can determine the quality of spot welding automatically and transmit the information of NDT quality to smart devices of field workers in real-time so that convenience of NDT and productivity of automobile production will be improved. Several specimens with a variety of welding quality was produced to evaluate the performance of the proposed mobile ultrasonic NDT system and the conventional foreign equipment, through this experiments, the proposed mobile ultrasonic NDT system indicate the superior properties compared to the conventional equipment in terms of convenience, productivity, and economic.

The review of Non-Destructive Testing regarding railway vehicle (철도차량의 비파괴검사에 관한 고찰)

  • Kim Jung-Nam;Jang Gil-Soo;Park Young-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1097-1102
    • /
    • 2005
  • Non-Destructive Testing (NDT) is test method which finds the mechanical or natural or artificial defects of the interior or exterior of those without destructing materials and welded products. NDT is a means to assess the perfection of a component or system perfection. NOT images defects using scattered light, sound, electric current, magnetic fields and X-ray. Each NDT method has merits and demerits in the detecting ability of defects according to evaluated subjects. Defects can affect the serviceability of the material or structure, so NDT is important in guaranteeing safe operation as well as in quality control. In this review, we considered the methods of NDT applied to current railway vehicle manufacturing.

  • PDF

Terahertz Non-destructive Testing Technology for Industrial Applications (산업용 테라헤르츠 비파괴 검사 기술)

  • Lee, E.S.;Moon, K.;Lee, I.M.;Park, D.W.;Choi, D.H.;Shin, J.H.;Kim, H.S.;Choi, D.H.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.3
    • /
    • pp.59-69
    • /
    • 2018
  • Terahertz (THz) imaging and spectroscopy have been developed as non-destructive testing methods for various industrial applications. However, they have not been widely adopted in real applications owing to a high system price and the large size of conventional THz time-domain spectroscopy systems, which are based on ultrashort optical pulse lasers. Recently, various types of compact THz emitters and detectors have become available. As a result, THz non-destructive test (NDT) systems have become viable solutions. Herein, we briefly review the recent advances in THz NDT techniques adopting continuous-wave THz systems, including our recent results of a THz-based waterproof test system and an electrical connection inspection system for car manufacturing.

A Mechanic Structure Safety Evaluation Using Laser-Based Ultrasonics Application (기계 구조물의 안정성 평가를 위한 레이저 초음파법 적용)

  • 김재열;송경석;김창현;고명수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.174-179
    • /
    • 2003
  • Non-destructive test on the size and depth of cracks has been required for the safety evaluation of structures. Ultrasonic method based on laser techniques is one of the most popular non-destructive methods which overwhelm PZT based tests. In the present paper, ultrasonic was generated by high powered Q switching Nd:YAG pulse laser. Experiments were carried out using Fabry-Perot interferometer which was intensively discussed in the present study.

  • PDF

Non-Destructive Test for Tunnel Lining Using Ground Penetrating Radar (지하레이다(GPR)를 이용한 터널 라이닝 비파괴시험에 관한 연구)

  • 김영근;이용호;정한중;신상범;조철현
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.274-283
    • /
    • 1997
  • It is necessary to estimate the soundness of tunnel using non-destructive tests(NDT) for effective repairs and maintenances. But, the state of tunnel lining could not be investigated using previous non-destructive techniques, due to the various types of support and accessibility only from one side in tunnel lining. Recently, the various non-destructive techniques such as ground penetrating radar(GPR) have been researched and developed for inspection of tunnel lining. In this study, the usefulness and applicability of GPR test in tunnel lining inspection has been investigated through model tests and tunnel site application. This paper described the tunnel lining inspection for lining thickness, cavity and support using GPR test. From the results of tests, we have concluded that GPR test are very useful and effective techniques to look into the interior of lining and measure the lining thickness.

  • PDF

Estimation of Rockbolt Integrity by Using Non-Destructive Testing Techniques(I) -Numerical and Experimental of Applicability- (비파괴 시험기법을 이용한 록볼트의 건전도 평가(I) -수치해석 및 실험적 적용성 평가-)

  • Lee, Jong-Sub;Lee, Yong-Jun;Eom, Tae-Won;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.3-12
    • /
    • 2006
  • The purpose of this study is to describe the Non-Destructive Testing(NDT) of the rockbolt and investigate the applicability of the NDT methods to estimate the integrity of the rockbolt. To examine the rockbolt integrity including rockbolt itself and grouting material, two methods are adopted: numerical and experimental methods. In the numerical method, the numerical code DISPERSE is used to analyze the dispersion of the rockbolt. The dispersion curve shows the effects of the thickness and stiffness of grouted materials on the embedded rockbolt. Therefore, the optimal frequency for the integrity test of the rockbolt is obtained: 20~120kHz in L(1,0) mode. In the experimental methods, destructive and non-destructive tests are carried out in a laboratory. In the non-destructive test, the low frequency mode generated by an impact and t he high frequency mode generated by an ultrasonic transducer seem to characterize the rockbolt condition readily. The experimental results show that the guided waves attenuate more significantly when the stiffness of the grouted material increases and/or the zone of the defect increases. Meanwhile, the ultimate capacity of rockbolt was evaluated through the pull-out tests and is compared to the NDT results. This study demonstrates that the NDT is a valuable tool for the rockbolt integrity evaluation.

  • PDF

Application of Non-Destructive Testing Techniques to the Evaluation of Integrity of Drilled Shaft (비파괴시험을 이용한 현장타설말뚝의 건전도 평가에 관한 연구)

  • Chae, Jong-Hoon;Yu, Jae-Myung;Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.5-14
    • /
    • 2001
  • The NDT(Non-Destructive Testing) technique, detecting defects without damaging foundations, has, lately, been a matter of concern. In this study, the applicability of the borehole methods(CSL, CT, PS) and the surface reflection methods(SE, IR) to the evaluation of integrity of drilled shaft was investigated through field test. Ten drilled shafts, 0.4 m in diameter and 7.0 m long each, were constructed, one shaft with no defect and nine shafts intentionally with the combination of the common defects such as soft bottom, necking, bulging, cave-in, and/or weak concrete. Analysing each NDP test result on the constructed drilled shafts, an optimum combination of the NDP methods as well as the applicability of each NDP method to detecting defects of drilled shaft have been investigated.

  • PDF

NDT of Concrete Exposed High Temperature Using Ultrasonic Method (초음파법을 이용한 고온가열 콘크리트의 비파괴 평가)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Kim, Hong-Seop;Lee, Bo-Kyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.24-25
    • /
    • 2016
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. So, concrete at high temperature is evaluated mechanical properties for safety inspection. However, research of ultrasonic method is not much. Therefore, the purpose of this study is to NDT(non-destructive test) of 30, 70, 110MPa concrete exposed high temperature using ultrasonic pulse velocity and amplitude.

  • PDF

Application Technique of PZT Patches to Estimation of Crack Location and Size in Structures (구조물 손상 위치 및 크기 평가를 위한 압전소자 응용기술)

  • Hong, Dong-Pyo;Hong, Yong;Wang, Gao-Ping;Han, Byeong-Hee;Hwang, Seung-Ho;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.315-318
    • /
    • 2007
  • Non-Destructive Health Monitoring using PZT sensors is a major concern and has great significance for research about NDT (Non-Destructive Test). In this paper, we study about the guided wave measurement method using PZT sensors to find cracks and estimate locations. Two aluminum beams bonded with PZT sensors were tested for estimating about the guided wave propagation characteristics and shape of each beam are decided in terms of analytical purpose. NI Signal Acquisition Device and specially designed LabVIEW VI program were used for data acquisition and analysis. The measured data were progressed by using a high-pass filtering.

  • PDF