• 제목/요약/키워드: non-destructive technique

검색결과 381건 처리시간 0.029초

CT Image Reconstruction of Wood Using Ultrasound Velocities I - Effects of Reconstruction Algorithms and Wood Characteristics -

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권5호통권133호
    • /
    • pp.21-28
    • /
    • 2005
  • For the proper conservation of wooden cultural properties, non-destructive evaluation (NDE) method, which can be used to quantitatively evaluate the internal state of wood members, are needed. In this study, an ultrasonic CT system composed of portable devices was attempted, and the capacity of this system was verified by reconstructing the CT images for two phantoms and two artificially defected specimens. Results from this study showed that the sizes of detected defects were enlarged and the shapes were distorted on the CT images. Also, the positions were shifted somewhat toward the surface of specimen, which is regarded due to the anisotropic property of wood. Compared to the filtered back-projection method, SIRT (simultaneous iterative reconstruction technique) method was determined to be more efficient as the algorithm of image reconstruction for wood. A new ultrasonic CT system is thought to be used as a NDE method for wood. However wood characteristics and wave diffraction within wood made it difficult to accurately evaluate the size, shape and position of defects. To improve the quality of CT image of wood, more research including the relationship between wood and ultrasound is needed, and wood properties should be taken into consideration on the image reconstruction algorithm.

전기저항법에 의한 크리프 손상의 비파괴적 검출 (Non-destructive Detection of Creep Damage Based on Electric Resistance Technique)

  • 이해우;윤기봉;남승훈;소철호
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.155-159
    • /
    • 1994
  • As Cr-Mo-V steels have excellent mechanical and creep properties at elevated temperatures, they are extensively used in power plants. However, the steam turbine components are supposed to have suffered material degradation during long-term service at elevated tenperatures. Many efforts have been made to assess the safety and residual life of these components by means of non-destructive methods such as plastic replication, hardness and electric resistance techniques. Recently, a parameter correlating hardness changes during long-term heating to those during creep was introduced and it was named 'G parameter'. The electric resistivity as well as hardness are affected by damage accumulation, but there have been no efforts to correlate G parameter to resistivity changes. In this study, relationship between G parameter and changes in electric resistivity was investigated using artificially aged Cr-Mo-V steel. It is well understood that G parameter can be applied to electric: resistance techmique.

  • PDF

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • 제1권4호
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

소각중성자 산란법을 이용한 도금층의 극미세 균열 형상의 비파괴적 분석 (Non-destructive Analysis of Nano-sized Crack Morphology of Electro-deposit by Using Small Angle Neutron Scattering)

  • 최용;신은주;한영수;성백석
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.111-118
    • /
    • 2016
  • A method to quantitatively analyze the defects formed by the hydrogen evolution during electroplating was suggested based on the theoretical approach of the small angle neutron scattering technique. In case of trivalent chrome layers, an isolated defect size due to the hydrogen evolution was about 40 nm. Direct and pulse plating conditions gave the average defect size of about 4.9 and $4.5{\mu}m$ with rod or calabash shape, respectively. Current density change of the pulse plating from $1.5A/dm^2$ to $2.0A/dm^2$ enlarged the average defect size from 3.3 to $7.8{\mu}m$. The defect morphology like rod or calabash was originated by inter-connecting the isolated defects. Small angle neutron scattering was useful to quantitatively evaluate defect morphology of the deposit.

신경회로망을 이용한 오스테나이트계 스테인리스강 304 용접부의 결함 분류 및 평가에 관한 연구 (A Study on the Defect Classification and Evaluation in Weld Zone of Austenitic Stainless Steel 304 Using Neural Network)

  • 이원;윤인식
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.149-159
    • /
    • 1998
  • The importance of soundness and safety evaluation in weld zone using by the ultrasonic wave has been recently increased rapidly because of the collapses of huge structures and safety accidents. Especially, the ultrasonic method that has been often used for a major non-destructive testing(NDT) technique in many engineering fields plays an important role as a volume test method. Hence, the defecting any defects of weld Bone in austenitic stainless steel type 304 using by ultrasonic wave and neural network is explored in this paper. In order to detect defects, a distance amplitude curve on standard scan sensitivity and preliminary scan sensitivity represented of the relation between ultrasonic probe, instrument, and materials was drawn based on a quantitative standard. Also, a total of 93% of defect types by testing 30 defect patterns after organizing neural network system, which is learned with an accuracy of 99%, based on ultrasonic evaluation is distinguished in order to classify defects such as holes or notches in experimental results. Thus, the proposed ultrasonic wave and neural network is useful for defect detection and Ultrasonic Non-Destructive Evaluation(UNDE) of weld zone in austenitic stainless steel 304.

  • PDF

Damage evaluation of RC beams strengthened with hybrid fibers

  • Sridhar, Radhika;Prasad, Ravi
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.9-19
    • /
    • 2019
  • This paper describes an experimental investigation on hybrid fiber reinforced concrete (HYFRC) beams. And the main aim of this present paper is to examine the dynamic characteristics and damage evaluation of undamaged and damaged HYFRC beams under free-free constraints. In this experimental work, totally four RC beams were cast and analyzed in order to evaluate the dynamic behavior as well as static load behavior of HYFRCs. Hybrid fiber reinforced concrete beams have been cast by incorporating two different fibers such as steel and polypropylene (PP). Damage of HYFRC beams was obtained by cracking of concrete for one of the beams in each set under four-point bending tests with different percentage variation of damage levels as 50%, 70% and 90% of maximum ultimate load. And the main dynamic characteristics such as damping, fundamental natural frequencies, mode shapes and frequency response function at each and every damage level has been assessed by means of non-destructive technique (NDT) with hammer excitation. The fundamental natural frequency and damping values obtained through dynamic tests for HYFRC beams were compared with control (reference) RC beam at each level of damage which has been acquired through static tests. The static experimental test results emphasize that the HYFRC beam has attained higher ultimate load as compared with control reinforced concrete beam.

Prediction of the Vase Life of Cut Lily Flowers Using Thermography

  • Lee, Ja Hee;Choi, So Young;Park, Hye Min;Oh, Sang Im;Lee, Ae Kyung
    • 인간식물환경학회지
    • /
    • 제22권3호
    • /
    • pp.233-239
    • /
    • 2019
  • This study was conducted in order to predict the vase life of cut lily 'Woori Tower' flowers using a non-destructive thermal imaging technique. It was found that the temperature of cut lily flowers was maintained at 20℃ and was slightly lower than the air temperature until they bloomed. On the 11th day, when flowers bloomed, the temperature of leaves and flowers was measured to be 18.75±0.38℃ and 19.23±0.32℃ respectively, and their difference with ambient temperature was over 3℃. The flower temperature increased slightly when the vase life of cut lily flowers ended, and the temperature difference between the air and leaf temperature (1.77℃) and between the air and flower temperature (1.39℃) got smaller. No visible aging symptom was observed, but it was found that the temperature had risen due to water losses and less functional stomata. The vase life of cut lily flowers can be predicted based on changes in temperature and it will be also possible to predict the potential quality and vase life of cut flowers before harvesting them in greenhouses.

자기광학센서를 이용한 강자성체 결함 탐상 (The Detection of Defects in Ferromagnetic Materials Using Magneto-Optical Sensor)

  • 김훈
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.52-57
    • /
    • 2004
  • A new non-destructive inspection technique has been developed. One characteristic of the technique is that defects are visualized by laser ray. Magnetic domains and domain walls of a magneto-optical sensor(MO sensor) are varied by the magnetic flux leaked by defects, and the variations are observed by the reflected light of the laser ray. The information of defect can remotely be inspected by this technique in a real time. This paper describes the results estimated on the 2-dimensional surface defects and opposite-side defects in a ferromagnetic material and the natural surface defect in a clutch disk wheel. The light region of a visible image and the magnitude of a reflected light increases as the input current of the magnetizer increases. The natural surface defect, that has not the width of crack's open mouth, can be also visualized like as 2-dimensional artificial defects.

  • PDF