• Title/Summary/Keyword: non-crack

Search Result 742, Processing Time 0.028 seconds

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

A Study on Electrical Characteristics for Coil Winding Number Changes of Eddy Current Bobbin Coil for Steam Generator Tubes in NPPs (원전 증기발생기 전열관 와전류검사용 보빈코일의 권선 수 변화에 대한 전기적 특성 연구)

  • Nam, Min-Woo;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.64-70
    • /
    • 2012
  • Two kinds of eddy current probes are mainly used to perform the steam generator tube integrity assesment in NPPs. The first one is the bobbin probe using for inspection of volumetric defect like a fretting wear. The second one is the rotating probe using for inspection of non-volumetric defect like a crack. The eddy current probe is one of the essential components which consist of the whole eddy current examination system, and provides a decisive data for the tube integrity in accordance with acceptance criteria described in specific procedures. The design of ECT probe is especially important to improve examination results because the quality of acquired ECT data is depended on the probe design characteristics, such as coil geometry, electrical properties, operation frequency. In this study, it is analyzed that the coil winding number of differential bobbin probe affects the electrical properties of the probe. Eddy current bobbin probes for the steam generator tubes in NPPs are designed and fabricated according to the results. Experiment shows that the change in coil winding number has much effects on the optimum inspection frequency determined by the tube geometry and material. Therefore, the coil winding number in bobbin probe is very important in the probe design. In this study, a basis of the coil winding number for the eddy current bobbin probe design for steam generator tubes in NPPs is established.

Effect of seaweed extracts(GA14), a plant growth regulator, on growth and yield of two rice cultivars (식물생장조절제 Seaweed extracts(GA14)의 수도 품종간 생육 및 수량에 미치는 효과)

  • Song, Jae-Young;Kim, Yong-Il;Park, Bo-Young;Jung, Jae-Young;Choi, Hyun-Gu;Jung, Jong-Tae;Lee, Hee-Bong
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • This study was carried out to identify the effects of seaweed extracts(GA14) on growth of two rice cultivars, Junambyo and Donganbyo. Seedling qualities of two cultivars were better in all items including heading dates at early stage treated at seedling plus 2-3 leaf stages than at single treatment of seedling. Ripening ratio of Junambyo in paddy field was increased 0.3% by seaweed extracts(GA14) treatment, but that of Donganbyo decreased 0.5%. 1,000 grain weight of Junambyo and Donanbyo by seaweed extracts(GA14) treatment was two to four grams higher and the yield of two cultivars was also higher by three to four percent. Appearance characters of two rice cultivars was high in head, while damaged, chalky and crack rate were low at seaweed extracts(GA14) treatment. Protein, moisture and amylose characteristics related to table quality of Junambyo were not different by seaweed extracts treatment, but table values was high in only treatment. Donganbyo was also similar to Junambyo, but table quality was slightly high at non-treatment.

  • PDF

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

Effect of Thermal Environment by Green Roof and Land Cover Change in Detached Housing Area (옥상녹화 및 토양피복 변화가 단독주택지 외부 열환경에 미치는 영향 분석)

  • Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.27-47
    • /
    • 2011
  • Used as foundation resources for environment improvement and preservation of single-housing residential area by practicing classification of biotope with the concept of ecological area rate applied and performing urban thermal environment prediction simulation. Biotope is classified as seven types according to classification of biotope which is carried out with the concept of ecological area rate applied. The classification is listed below in descending order: building biotope(48.16%), impervious pavement biotope(39.75%), greenspace biotope(6.23%), crack permeable pavement biotope(3.26%), whole surface permeable pavement biotope(2.51%), parts permeable pavement biotope(0.04%). As a result of analysing prediction of variation and characteristics of thermal environment of single-housing residential area, land surface temperature per types of biotope are evaluated as listed below in descending temperature order: impervious pavement biotope > building biotope > greenspace biotope > permeable pavement biotope. In case 2 where vegetated roof hypothetically covers 100% of the roof area, temperature is predicted to be $33.58^{\circ}C$ Max, $23.85^{\circ}C$ Min, and $27.74^{\circ}C$ Avg. which is Approximately $5.19^{\circ}C$ lower than a non-vegetated roof. Average outdoor temperature for case 2 is studied to be $0.18^{\circ}C$ lower than case 1.

  • PDF

Hybrid Powder-Extrusion Process Involving the Control of Temperature Dwelling Time for Fabricating Spur Gears with Required Properties (온도 유지시간 제어를 적용한 하이브리드 분말 압출 공정을 통한 요구 특성의 스퍼기어 제조)

  • Lee, Kyung-Hun;Hwang, Dae-Won;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.847-853
    • /
    • 2011
  • In this study, a hybrid powder-extrusion process involving the control of temperature dwelling time for improving the formability of Zn-22Al powder was developed and the effect of dwelling time on the mechanical properties of a spur gear with a pitch circle having a diameter of 1.8 mm was investigated. General extrusion experiments were carried out at different temperatures such as 290, 300, and $310^{\circ}C$. Spur gears with good qualities and without any surface defects were obtained in the case of extrusion temperature of $310^{\circ}C$ and ball-milling duration of 32 h. The Vickers hardness distribution was non-uniform, and after the sintering process, an internal crack was generated because of the different deformation energy between gear central part and teeth. To overcome the abovementioned problems, research on controlling the dwelling time of the extrusion temperature in the powder-extrusion process was carried out. Good-quality spur gears were obtained when the dwelling time was 15 min.

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF

A Study on the Stability of Uncontinuous Plate Structures with Cracks (결함을 갖는 불연속평판 구조물의 안정성 연구)

  • Lee, Seon-U;Kim, Si-Yeong;Hong, Bong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 1984
  • This paper deals with the characterics of the stability of uncontinuous plate structures with cracks. The relation between the J-intergal of the cracks existing in the stress-concentrated regions and local strain are investigated experimentally and theoretically. The BEM(boundary element method)analysis and test results lead to the follow conclusions: 1. A non-dimensional J was computed in a plate stress and strain condition for several kind of loads and crack types. The J design curves are defined as follows: J sub(E)/$\sigma$ sub(y) super(2) a=3.345(e/e sub(y) ) super(2) at e/e sub(y)$\leq$1 J sub(E)/$\sigma$ sub(y) super(2) a=3.345(e/e sub(y) ) at e/e sub(y)$\geq$1 2. Use of this curve provides a good estimation for the uncontinuous plate structures with cracks existing in the stress and strain concentrated region. 3. The stability of the characteristics is mainly depenent upon not the length of cracks but the type of the cracks.

  • PDF

Aging Deterioration for Electric Power Transmission Tower on Offshore Through Periodic Inspections (해상송전철탑 구조물의 주기점검을 통한 경년열화 변화특성)

  • Lee, Ho Beom;Jang, Il Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.25-33
    • /
    • 2012
  • In electric power transmission tower structures on offshore, implementation of life management using the event data of regular safety inspections for structural and material damages is strongly recommended. In this study, six tower structures in Sihwa Lake around Yeoungheung island were target bodies for the safety inspections. safety inspections for deterioration about each of six towers were performed about three items for steel member, five items for concrete foundation, and four items for steel-pipe pile in seawater and seawater itself. Safety inspections for steel members included the visual observations of surface appearances, the measurements of member thicknesses, and the checks of painting states. Also safety inspections for concrete foundations comprised the estimation of crack features, the evaluation of non-destructive compression strengths, and the measurements of neutralization depths and chlorides contents. For steel-pipe piles in seawater the inspections comprised the surveys of corrosion states in accordance with potential levels tests and anode tests, the analyses of photos taken on surfaces of the piles as well as the evaluation of seawater quality. A set of deterioration inspections was performed at the same positions around october of each year for three consecutive years. As a result in this study, Newly developed deterioration indexes have been applied profitably to maintain structural safety for electric power transmission towers by utilizing these event data systematically.

Adhesive Properties of High Flowable SBR-modified Mortar for Concrete Patching Material Dependent on Surface Water Ratio of Concrete Substrate (콘크리트 피착체의 표면수율에 따른 단면복구용 고유동성 SBR 개질 모르타르의 부착특성)

  • Do, Jeong Yun;Kim, Doo Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.124-134
    • /
    • 2013
  • This study investigated the effect of surface water on concrete substrate on adhesive strength in tension of very high flowable SBR-modified cement mortar. The specimens were prepared with proportionally mixing SBR latex, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Polymer cement ratio (P/C) were 10, 20, 30, 50 and 75% and the weight ratio of fine aggregate to cement were 1:1 and 1:3. The specimens obtained with different P/C and C:F were characterized by unit weight, flow test, crack resistance and adhesion test. After basic tests, two mixtures of P/C=20% and 30% in case of C:F=1:1, and one mixture of P/C=50% in case of C:F=1:3 were selected, respectively. These three selected specimens were studied about the effect of surface water evenly sprayed on concrete substrate by a amount of 0, 0.006, 0.012, 0.017, 0.024g per unit area ($cm^2$) of concrete substrate surface The results show that surface water on concrete substrate increases the adhesive strength in tension of high flowable SBR-modified cement mortar and improve the flowability compared to the non-sprayed case.