• Title/Summary/Keyword: non-cooperative

Search Result 435, Processing Time 0.025 seconds

Cooperative User Equilibrium Under Advanced Traveler Information Systems (첨단교통정보체계(ATIS)하에서 협력적 사용자 균형)

  • Lim Yong-Taek
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.81-88
    • /
    • 2005
  • Cooperation among network users would be possible in a near future, as real time communication between them can be available by telematics. This implies that non-cooperative assumption like Wardrop's principle, which has been widely used so far in network modelling may not be appropriate for route choice problem. So a new principle requires for describing such cooperative case. This paper presents a criterion, which represents cooperative route choice behaviour among network users. With some examples, we compare the non-cooperative principle and the cooperative one presented in this paper. Numerical results from the examples show that the new principle would be better than the existing one.

  • PDF

Using Range Extension Cooperative Transmission in Energy Harvesting Wireless Sensor Networks

  • Jung, Jin-Woo;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2012
  • In this paper, we study the advantages of using range extension cooperative transmission (CT) in multi-hop energy harvesting wireless sensor networks (EH-WSNs) from the network layer perspective. EH-WSNs rely on harvested energy, and therefore, if a required service is energy-intensive, the network may not be able to support the service successfully. We show that CT networks that utilize both range extension CT and non-CT routing can successfully support services that cannot be supported by non-CT networks. For a two-hop toy network, we show that range extension CT can provide better services than non-CT. Then, we provide a method of determining the supportable services that can be achieved by using optimal non-CT and CT routing protocols for EH-WSNs. Using our method and network simulations, we justify our claim that CT networks can provide better services than nonCT networks in EH-WSNs.

HEVA: Cooperative Localization using a Combined Non-Parametric Belief Propagation and Variational Message Passing Approach

  • Oikonomou-Filandras, Panagiotis-Agis;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.397-410
    • /
    • 2016
  • This paper proposes a novel cooperative localization method for distributed wireless networks in 3-dimensional (3D) global positioning system (GPS) denied environments. The proposed method, which is referred to as hybrid ellipsoidal variational algorithm (HEVA), combines the use of non-parametric belief propagation (NBP) and variational Bayes (VB) to benefit from both the use of the rich information in NBP and compact communication size of a parametric form. InHEVA, two novel filters are also employed. The first one mitigates non-line-of-sight (NLoS) time-of-arrival (ToA) messages, permitting it to work well in high noise environments with NLoS bias while the second one decreases the number of calculations. Simulation results illustrate that HEVA significantly outperforms traditional NBP methods in localization while requires only 50% of their complexity. The superiority of VB over other clustering techniques is also shown.

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

A Non-cooperative Game Theoretic Approach to Dust and Sand Storm in North East Asia

  • Song, Yang-Hoon
    • Journal of Environmental Policy
    • /
    • v.6 no.3
    • /
    • pp.91-114
    • /
    • 2007
  • The cooperative cost sharing scheme for Dust and Sand Storm(DSS) in North East Asia, as suggested in Song and Nagaki(2007), may not be feasible due to possible defection(s) of participating countries. If non-cooperative strategies are more plausible, Nash equilibrium can suggest possible outcomes of the cost sharing game. The result from the continuous strategy model shows that there exists an infinite number of Nash equilibrium such that the summation of investment from each country is always equal to the required budget of the ADS pilot project. It is also discussed that the discrete strategy model points to only 3 Nash equilibria in continuous strategy game outcome and the cooperative game solution may be just one of the infinite equilibria.

  • PDF

MIMO Two-way Cooperative Relay to Improve End to End Capacity in Non-equidistant Topology

  • Niyizamwiyitira, Christine;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.465-467
    • /
    • 2010
  • This paper proposes MIMO two-way cooperative relay scheme to optimize the end to end capacity in wireless multi-hop mesh network. The basic idea is to perform data transmission via multi-hop relay nodes, in equidistant topology, this method is quite efficient. However, on one hand this topology is very rare in practical situation, on the other hand, in real practical situation where the topology is most likely non equidistant, the end to end capacity significantly degrades due to bottleneck link caused by uneven SNR. Moreover, the end to end capacity degrades at high SNR due to overreach interference from far nodes existing in multi-hop relay networks. In this paper, MIMO two-way cooperative relay in the region of non equidistant nodes is found efficient to improve the end to end capacity. The proposed scheme is validated using numerical simulation.

  • PDF

A Game Theoretic Study of Energy Efficient Cooperative Wireless Networks

  • Brown, Donald Richard III;Fazel, Fatemeh
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.266-276
    • /
    • 2011
  • In wireless networks, it is well-known that intermediate nodes can be used as cooperative relays to reduce the transmission energy required to reliably deliver a message to an intended destination. When the network is under a central authority, energy allocations and cooperative pairings can be assigned to optimize the overall energy efficiency of the network. In networks with autonomous selfish nodes, however, nodes may not be willing to expend energy to relay messages for others. This problem has been previously addressed through the development of extrinsic incentive mechanisms, e.g., virtual currency, or the insertion of altruistic nodes in the network to enforce cooperative behavior. This paper considers the problem of how selfish nodes can decide on an efficient energy allocation and endogenously form cooperative partnerships in wireless networks without extrinsic incentive mechanisms or altruistic nodes. Using tools from both cooperative and non-cooperative game theory, the three main contributions of this paper are (i) the development of Pareto-efficient cooperative energy allocations that can be agreed upon by selfish nodes, based on axiomatic bargaining techniques, (ii) the development of necessary and sufficient conditions under which "natural" cooperation is possible in systems with fading and non-fading channels without extrinsic incentive mechanisms or altruistic nodes, and (iii) the development of techniques to endogenously form cooperative partnerships without central control. Numerical results with orthogonal amplify-and-forward cooperation are also provided to quantify the energy efficiency of a wireless network with sources selfishly allocating transmission/relaying energy and endogenously forming cooperative partnerships with respect to a network with centrally optimized energy allocations and pairing assignments.

An Order Statistic-Based Spectrum Sensing Scheme for Cooperative Cognitive Radio Networks in Non-Gaussian Noise Environments (비정규 잡음 환경에서 협력 무선인지 네트워크를 위한 순서 기반 스펙트럼 센싱 기법)

  • Cho, Hyung-Weon;Lee, Youngpo;Yoon, Seokho;Bae, Suk-Neung;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.943-951
    • /
    • 2012
  • In this paper, we propose a novel spectrum sensing scheme based on the order statistic for cooperative cognitive radio network in non-Gaussian noise environments. Specifically, we model the ambient noise as the bivariate isotropic symmetric ${\alpha}$-stable random variable, and then, propose a cooperative spectrum sensing scheme based on the order of observations and the generalized likelihood ratio test. From numerical results, it is confirmed that the proposed scheme offers a substantial performance improvement over the conventional scheme in non-Gaussian noise environments.

Joint Blind Parameter Estimation of Non-cooperative High-Order Modulated PCMA Signals

  • Guo, Yiming;Peng, Hua;Fu, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4873-4888
    • /
    • 2018
  • A joint blind parameter estimation algorithm based on minimum channel stability function aimed at the non-cooperative high-order modulated paired carrier multiple access (PCMA) signals is proposed. The method, which uses hierarchical search to estimate time delay, amplitude and frequency offset and the estimation of phase offset, including finite ambiguity, is presented simultaneously based on the derivation of the channel stability function. In this work, the structure of hierarchical iterative processing is used to enhance the performance of the algorithm, and the improved algorithm is used to reduce complexity. Compared with existing data-aided algorithms, this algorithm does not require a priori information. Therefore, it has significant advantage in solving the problem of blind parameter estimation of non-cooperative high-order modulated PCMA signals. Simulation results show the performance of the proposed algorithm is similar to the modified Cramer-Rao bound (MCRB) when the signal-to-noise ratio is larger than 16 dB. The simulation results also verify the practicality of the proposed algorithm.

An Improved Generation Maintenance Strategy Analysis in Competitive Electricity Markets Using Non-Cooperative Dynamic Game Theory (비협조 동적게임이론을 이용한 경쟁적 전력시장의 발전기 보수계획 전략 분석)

  • 김진호;박종배;김발호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.542-549
    • /
    • 2003
  • In this paper, a novel approach to generator maintenance scheduling strategy in competitive electricity markets based on non-cooperative dynamic game theory is presented. The main contribution of this study can be considered to develop a game-theoretic framework for analyzing strategic behaviors of generating companies (Gencos) from the standpoints of the generator maintenance-scheduling problem (GMP) game. To obtain the equilibrium solution for the GMP game, the GMP problem is formulated as a dynamic non-cooperative game with complete information. In the proposed game, the players correspond to the profit-maximizing individual Gencos, and the payoff of each player is defined as the profits from the energy market. The optimal maintenance schedule is defined by subgame perfect equilibrium of the game. Numerical results for two-Genco system by both proposed method and conventional one are used to demonstrate that 1) the proposed framework can be successfully applied in analyzing the strategic behaviors of each Genco in changed markets and 2) both methods show considerably different results in terms of market stability or system reliability. The result indicates that generator maintenance scheduling strategy is one of the crucial strategic decision-makings whereby Gencos can maximize their profits in a competitive market environment.