• Title/Summary/Keyword: non-cooperative

Search Result 435, Processing Time 0.037 seconds

Non-Cooperative Game Joint Hidden Markov Model for Spectrum Allocation in Cognitive Radio Networks

  • Jiao, Yan
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • Spectrum allocation is a key operation in cognitive radio networks (CRNs), where secondary users (SUs) are usually selfish - to achieve itself utility maximization. In view of this context, much prior lit literature proposed spectrum allocation base on non-cooperative game models. However, the most of them proposed non-cooperative game models based on complete information of CRNs. In practical, primary users (PUs) in a dynamic wireless environment with noise uncertainty, shadowing, and fading is difficult to attain a complete information about them. In this paper, we propose a non-cooperative game joint hidden markov model scheme for spectrum allocation in CRNs. Firstly, we propose a new hidden markov model for SUs to predict the sensing results of competitors. Then, we introduce the proposed hidden markov model into the non-cooperative game. That is, it predicts the sensing results of competitors before the non-cooperative game. The simulation results show that the proposed scheme improves the energy efficiency of networks and utilization of SUs.

A Study on Intention Exchange-based Ship Collision Avoidance by Changing the Safety Domain

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.259-268
    • /
    • 2019
  • Even if only two ships are encountered, a collision may occur due to the mistaken judgment of the positional relationship. In other words, if an officer does not know a target ship's intention, there is always a risk of collision. In this paper, the experiments are conducted to investigate how the intention affects the action of collision avoidance in cooperative and non-cooperative situations. In non-cooperative situation, each ship chooses a course that minimizes costs based on the current situation. That is, it always performs a selfish selection. In a cooperative situation, the information is exchanged with a target ship and a course is selected based on this information. Each ship uses the Distributed Stochastic Search Algorithm so that a next-intended course can be selected by a certain probability and determines the course. In the experimental method, four virtual ships are set up to analyze the action of collision avoidance. Then, using the actual AIS data of eight ships in the strait of Dover, I compared and analyzed the action of collision avoidance in cooperative and non-cooperative situations. As a result of the experiment, the ships showed smooth trajectories in the cooperative situation, but the ship in the non-cooperative situation made frequent big changes to avoid a collision. In the case of the experiment using four ships, there was no collision in the cooperative situation regardless of the size of the safety domain, but a collision occurred between the ships when the size of the safety domain increased in cases of non-cooperation. In the case of experiments using eight ships, it was found that there are optimal parameters for collision avoidance. Also, it was possible to grasp the variation of the sailing distance and the costs according to the combination of the parameters, and it was confirmed that the setting of the parameters can have a great influence on collision avoidance among ships.

GROUND STATE SOLUTIONS OF NON-RESONANT COOPERATIVE ELLIPTIC SYSTEMS WITH SUPERLINEAR TERMS

  • Chen, Guanwei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.789-801
    • /
    • 2014
  • In this paper, we study the existence of ground state solutions for a class of non-resonant cooperative elliptic systems by a variant weak linking theorem. Here the classical Ambrosetti-Rabinowitz superquadratic condition is replaced by a general super quadratic condition.

A Comparison of Oral Health Behavior and Oral Health Outcomes between Cooperative and Non-Cooperative Groups following Implementation of an Oral Health Care Program (치위생 과정에 근거한 구강예방프로그램 적용 후 협조군과 비협조군 간 구강건강상태 및 행동 비교)

  • Kim, Yu-Rin
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.30-37
    • /
    • 2017
  • The purpose of this study was to reveal analyze the relationship between status of participation in an oral health care program and oral health outcomes among patients in Korea, and to evaluate the results to provide evidence regarding the feasibility of widespread implementation of the program. Patients were designated as either cooperative or non-cooperative with the oral health care program and were assigned to each group accordingly. Modified dental hygiene process (M-DHP) of the oral healthcare program was modified to form the dental hygiene process. The study included 48 patients at a dental clinic in Busan, Korea. Questionnaires were used to collect information on oral health behavior (OHB), clinical examination was used to record bleeding on probing (BOP) and O'Leary index, and phase microscopy was used to identify microorganisms. Differences between groups were evaluated using repeated measures ANOVA. Our results showed that the group cooperative with the oral health care program showed greater improvement in OHB, BOP, and O'Leary index than the non-cooperative group. Second, patient satisfaction with the M-DHP was very high, particularly for content and the friendly nature of the staff. The cooperative group showed greater improvement in oral health than the non-cooperative group for all metrics. Our results suggest that this low-coste program, if implemented, would be actively accepted and utilized in dental clinics.

Optimal Power Control in Cooperative Relay Networks Based on a Differential Game

  • Xu, Haitao;Zhou, Xianwei
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.280-285
    • /
    • 2014
  • In this paper, the optimal power control problem in a cooperative relay network is investigated and a new power control scheme is proposed based on a non-cooperative differential game. Optimal power allocated to each node for a relay is formulated using the Nash equilibrium in this paper, considering both the throughput and energy efficiency together. It is proved that the non-cooperative differential game algorithm is applicable and the optimal power level can be achieved.

Source Information Estimation Using Enemy's Single-Ping and Underwater Geographic Information in Non-Cooperative Bistatic Sonar (비협동 양상태 소나에서 적함 송신기의 단일 능동 신호와 해저 지형 정보를 이용한 송신기 정보 추정)

  • Lee, Dong-Hwa;Nam, Jong-Geun;Jung, Tae-Jin;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.196-203
    • /
    • 2010
  • The bistatic sonar operations using a spatially-separated source and receiver are classified into cooperative and non-cooperative operations. In the cooperative operation, an active signal of a friendly ship is used and the source information is known previously. In the non-cooperative operation, an active signal of the enemy is used and it is difficult to find out the source information. The source information consists of the range, speed, course and frequency of the source. It gives advantage to operating bistatic sonar. This paper suggests a method of estimating the source information with geographic information in the sea and the single-ping of the enemy. The source range is given using one geographic point. And the source speed, course and the frequency of the enemy's source signal are given using two geographic points. Finally, the validity of the scheme is confirmed through a simulation study.

Performance of Distributed MISO Systems Using Cooperative Transmission with Antenna Selection

  • Park, Jong-Hyun;Kim, Jae-Won;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • Performance of downlink transmission strategies exploiting cooperative transmit diversity is investigated for distributed multiple-input single-output (MISO) systems, for which geographically distributed remote antennas (RA) in a cell can either communicate with distinct mobile stations (MS) or cooperate for a common MS. Statistical characteristics in terms of the signal-to-interference-plus-noise ratio (SINR) and the achievable capacity are analyzed for both cooperative and non-cooperative transmission schemes, and the preferred mode of operation for given channel conditions is presented using the analysis result. In particular, we determine an exact amount of the maximum achievable gain in capacity when RAs for signal transmission are selected based on the instantaneous channel condition, by deriving a general expression for the SINR of such antenna selection based transmission. For important special cases of selecting a single RA for non-cooperative transmission and selecting two RAs for cooperative transmission among three RAs surrounding the MS, closed-form formulas are presented for the SINR and capacity distributions.

Tight Lower Bound of Optimal Non-Coherent Detection for FSK Modulated AF Cooperative Communications in Rayleigh Fading Channels

  • Tian, Jian;Zhang, Qi;Yu, Fengqi
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.313-318
    • /
    • 2011
  • When wireless channels undergo fast fading, non-coherent frequency shift keying (FSK) (de)modulation schemes may be considered for amplify-and-forward (AF) cooperative communications. In this paper, we derive the bit-error-rate performance of partial non-coherent receiver as a lower bound of the optimal non-coherent receiver for FSK modulated AF cooperative communications. From the simulation and analytical results, it is found that the derived lower bound is very closed to simulation results. This result shows that knowing partial channel state information may not improve system performance significantly. On the other hand, conventional optimal non-coherent receiver involves complicated integration operation. To address the above complexity issue, we also propose a near optimal non-coherent receiver which does not involve integration operation. Simulation results have shown that the performance gap between the proposed near optimal receiver and the optimal receiver is small.

Technological Difficulty, Technological Spillover, and Private Incentive for Cooperative R&D (기술개발의 난이도와 기술적 파급효과가 기업의 공동연구개발 선호에 미치는 영향 -비용분담형 공동연구개발과 연구배증형 공동연구개발간 기업의 선호조건 비교-)

  • 유평일;최상채;임광선
    • Proceedings of the Technology Innovation Conference
    • /
    • 1996.12a
    • /
    • pp.141-153
    • /
    • 1996
  • Firms prefer in some specific conditions cooperative R&D to non-cooperative for developing technology. Previous studies on the conditions show firms want to choose cost-sharing type of cooperative R&D (the CS-RJV) rather than non-cooperative one when target technology is either 'relatively easy'or 'relatively difficult', and to join multiple-research type of cooperation (the MR-RJV) than to compete each other if technology is only 'relatively easy'. However, by introducing technological spillover as well as difficult of technology, only if there shown that this seemingly contrasted phenomenon almost disappears : the MR-RJV can i3e also preferred by firms even in case of 'relatively difficult'technology only if there exists some extent of a technological spillover.

  • PDF

Optimal Power Allocation and Relay Selection for Cognitive Relay Networks using Non-orthogonal Cooperative Protocol

  • Lan, Peng;Chen, Lizhen;Zhang, Guowei;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2047-2066
    • /
    • 2016
  • In this paper, we investigate joint power allocation and relay selection (PARS) schemes in non-orthogonal cooperative protocol (NOCP) based cognitive relay networks. Generally, NOCP outperforms the orthogonal cooperative protocol (OCP), since it can provide more transmit diversity. However, most existing PARS schemes in cognitive relay networks focus on OCP, which are not suitable for NOCP. In the context of NOCP, we first derive the joint constraints of transmit power limit for secondary user (SU) and interference constraint for primary user (PU). Then we formulate optimization problems under the aforementioned constraints to maximize the capacity of SU in amplify-and-forward (AF) and decode-and-forward (DF) modes, respectively. Correspondingly, we derive the closed form solutions with respect to different parameters. Numerical results are provided to verify the performance improvement of the proposed PARS schemes.