• Title/Summary/Keyword: non-classical

Search Result 464, Processing Time 0.023 seconds

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Dynamic analysis of a transversely isotropic non-classical thin plate

  • Fadodun, Odunayo O.;Borokinni, Adebowale S.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • This study investigates the dynamic analysis of a transversely isotropic thin plate. The plate is made of hyperelastic John's material and its constitutive law is obtained by taken the Frechect derivative of the highlighted energy function with respect to the geometry of deformation. The three-dimensional equation governing the motion of the plate is expressed in terms of first Piola-Kirchhoff's stress tensor. In the reduction to an equivalent two-dimensional plate equation, the obtained model generalizes the classical plate equation of motion. It is obtained that the plate under consideration exhibits harmonic force within its planes whereas this force varnishes in the classical plate model. The presence of harmonic forces within the planes of the considered plate increases the natural and resonance frequencies of the plate in free and forced vibrations respectively. Further, the parameter characterizing the transversely isotropic structure of the plate is observed to increase the plate flexural rigidity which in turn increases both the natural and resonance frequencies. Finally, this study reinforces the view that non-classical models of problems in elasticity provide ample opportunity to reveal important phenomena which classical models often fail to apprehend.

Voice Range Profiles of Trained Classical Singers (성악 훈련을 받은 성악인에서의 Voice Range Profile)

  • 정성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.11 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • Background and Objectives : The Voice Range Profile(VRP) is a two-dimensional graphic dysplay of an individual's amplitude range as a function of total fundamental frequency range. It is designed as a maximum performance test which can be used as a general indicator of voice problems in the non-professional voice and as a sensitive indicator of problems with the professional voice. The purpose of the study is to obtain a baseline VRT for the classical professional singers and compare it with the normal nonsinger's profile. We also compared the difference of VRP between the classical professional singers who have normal vocal fold and who have vocal folds lesions without dysphonia. Materials and Methods : The VRPs were elicited. from 42 trained classical singers(Soprano 26, Mesosoprano 5, Tenor 9, Bariton 2) and 20 untrained nonsingers(female 10, male 10) using Voice Range Profile Model 4326(Kay Elemetrics USA). The mean values for phonational range with highest and lowest pitch level and range of voice intensity with maximum and minimum intensity level were compared between classical singers and nonsingers. Results and Conclusions : The frequency range and dynamic range were significantly increased for the classical singers in comparison to the nonsingers. But there was no significant difference were found for the VRP between the parts in the classical singers. The classical singers who have vocal fold lesions showed slightly decreased VRP compared to those with healthy vocal folds.

  • PDF

A Study on Bayesian p-values

  • Hwnag, Hyungtae;Oh, Heejung
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.725-732
    • /
    • 2002
  • P-values are often perceived as measurements of degree of compatibility between the current data and the hypothesized model. In this paper, a new concept of Bayesian p-values is proposed and studied under the non-informative prior distributions, which can be thought as the Bayesian counterparts of the classical p-values in the sense of using the concept of significance level. The performances of the proposed Bayesian p-values are compared with those of the classical p-values through several examples.

A Study on the Role of Pivots in Bayesian Statistics

  • Hwang, Hyungtae
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.221-227
    • /
    • 2002
  • The concept of pivot has been widely used in various classical inferences. In this paper, it is proved by use of pivotal quantities that the Bayesian inferences can be arrived at the same results of classical inferences for the location-scale parameters models under the assumption of non-informative prior distributions. Some theorems are proposed in which the posterior distribution and the sampling distribution of a pivotal quantity coincide. The theorems are applied illustratively to some statistical models.

Analysis of Deformation Localization of Void Material using Nolocal Constitutive Relation (I) (비국소형 구성식을 이용한 보이드 재료의 변형 국소화 거동의 해석(I))

  • 김영석;최홍석;임성언
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • Most studies of failure analysis in ductile metals have been based on the classical plasticity theory using the local constitutive relations. These frequently yields a physically unrealistic solution, in which a numerical prediction of the onset of a deformation localization shows an inherent mesh-size sensitivity. A one way to remedy the spurious mesh sensitivity resulted in the unreasonable results is to incorporate the non-local plasticity into the simulation model, which introduce an internal (material) length-scale parameter into the classical constitutive relations. In this paper, a non-local version of the modified Gurson constitutive relation has been introduced into the finite element formulation of the simulation for plane strain compression of the visco elastic-plastic void material. By introducing the non-local constitutive relations we could successfully removed the inherent mesh-size sensitivity for the prediction of the deformation localization. The effects of non-local constitutive relation are discussed in terms of the load-stroke curve and the strain distributions accross the shear band.

  • PDF

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S.;Polyzos, D.;Beskos, D.E.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.705-716
    • /
    • 2003
  • Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

On the size-dependent behavior of functionally graded micro-beams with porosities

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.527-541
    • /
    • 2017
  • In this work, a new hyperbolic shear deformation beam theory is proposed based on a modified couple stress theory (MCST) to investigate the bending and free vibration responses of functionally graded (FG) micro beam made of porous material. This non-classical micro-beam model introduces the material length scale coefficient which can capture the size influence. The non-classical beam model reduces to the classical beam model when the material length scale coefficient is set to zero. The mechanical material properties of the FG micro-beam are assumed to vary in the thickness direction and are estimated through the classical rule of mixture which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. Effects of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, the material length scale parameter and slenderness ratios on bending and dynamic responses of FG micro-beams are investigated and discussed in detail. It is concluded that these effects play significant role in the mechanical behavior of porous FG micro-beams.

Small scale effect on the vibration of non-uniform nanoplates

  • Chakraverty, S.;Behera, Laxmi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.495-510
    • /
    • 2015
  • Free vibration of non-uniform embedded nanoplates based on classical (Kirchhoff's) plate theory in conjunction with nonlocal elasticity theory has been studied. The nanoplate is assumed to be rested on two-parameter Winkler-Pasternak elastic foundation. Non-uniform material properties of nanoplates have been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinates. Detailed analysis has been reported for all possible casesof such variations. Trial functions denoting transverse deflection of the plate are expressed in simple algebraic polynomial forms. Application of the present method converts the problem into generalised eigen value problem. The study aims to investigate the effects of non-uniform parameter, elastic foundation, nonlocal parameter, boundary condition, aspect ratio and length of nanoplates on the frequency parameters. Three-dimensional mode shapes for some of the boundary conditions have also been illustrated. One may note that present method is easier to handle any sets of boundary conditions at the edges.

Response spectrum analysis considering non-classical damping in the base-isolated benchmark building

  • Chen, Huating;Tan, Ping;Ma, Haitao;Zhou, Fulin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.473-485
    • /
    • 2017
  • An isolated building, composed of superstructure and isolation system which have very different damping properties, is typically non-classical damping system. This results in inapplicability of traditional response spectrum method for isolated buildings. A multidimensional response spectrum method based on complex mode superposition is herein introduced, which properly takes into account the non-classical damping feature in the structure and a new method is developed to estimate velocity spectra from the commonly used displacement or pseudo-acceleration spectra based on random vibration theory. The error of forced decoupling method, an approximated approach, is discussed in the viewpoint of energy transfer. From the base-isolated benchmark model, as a numerical example, application of the procedure is illustrated companying with comparison study of time-history method, forced decoupling method and the proposed method. The results show that the proposed method is valid, while forced decoupling approach can't reflect the characteristics of isolated buildings and may lead to insecurity of structures.