• Title/Summary/Keyword: non-axisymmetric

Search Result 210, Processing Time 0.026 seconds

Axisymmetric Multi-Stage Deep Drawing Dies Design Analysis Using Finite Element Method (유한요소법을 이용한 축대칭 다단계 딥드로잉 금형 설계 해석)

  • 이동호;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.65-73
    • /
    • 1998
  • The design analysis of axisymmetric, multi-stage deep drawing dies was performed using the rigid-viscoplastic finite element formulation. In the formulation, the axisymmetric CFS algorithm was employed. Hill's non-quadratic normal anisotropic yield criterion and isotropic hardening rule were considered. For trial initial displacements and tool contact points, the geometric force equilibrium method was adopted. In order to see the validity of the formulation, the multi-stage deep drawing processes of shell-cylinder front part of hydraulic booster were simulated. The simulation showed good agreements with measurements and PAM-STAMP.

Finite Element Simulation of Axisymmetric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • Kim Y. S.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.58-61
    • /
    • 2001
  • An implicit finite element formulation for axisymmetric tube hydroforming is investigated. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and frictionless contact between tube and fluid are considered using the mesh-normal vector computed from finite element mesh of the tube. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and simulation results are compared with experimental measurements. In the axisymmetric tube hydroforming process, an optimal hydraulic curve is pursued by performing the simulation with various internal pressures and axial forces.

  • PDF

Axisymmetric Modeling of Prestressing Tendons of the Nuclear Containment Building Dome (원전 격납건물 돔의 축대칭 텐던 모델링 기법)

  • Jeon Se Jin;Chung Chul Hun;Kim Young Jin;Chung Yun Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.758-761
    • /
    • 2004
  • Prestressing tendons of the nuclear containment building dome are arranged in a non-axisymmetric manner. However, simple axisymmetric modeling of the containment building is often employed to estimate the structural behavior for, e.g. the ultimate pressure, which requires the axisymmetric approximation of the actual tendon arrangements of the dome. A procedure is proposed that can devise the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. A numerical example of the CANDU type is presented to verify the procedure and to estimate the amount of approximation.

  • PDF

Analysis on the Likelihood of Axisymmetric Wave Propagation in Buried Water Pipes (지하매설 배관의 축대칭 파동 전파 가능성 해석)

  • Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • A study of the possible axisymmetric modes that propagate at low frequencies in buried, water-filled pipes is presented. It is well known that for a vacuum-pipe-vacuum system the sole non-torsional axisymmetric mode that exists at low frequencies is the fundamental L(0,1) mode. When a pipe is filled with water and still surrounded by a vacuum it is also known that another mode then appears which at low frequencies is characterized by predominantly axial water-borne displacements. In addition to these modes. this paper explores two other, less well known axisymmetric modes whose exitence depends on the acoustic properties of the outer medium that surrounds a pipe. The predicted characteristics of these modes are presented and the likelihood of them propagating over any significant distance in a buried water pipe is discussed.

Finite Element Simulation of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압 성형 공정의 유한요소 시뮬레이션)

  • 구본영;김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.590-597
    • /
    • 2000
  • A finite element formulation lot the simulation of axisymmetric sheet hydroforming is proposed, and an implicit program is coded. In order to describe normal anisotropy of steel sheet, Hill's non-quadratic yield function (Hill, 1979) is employed. Frictional contacts among sheet surface, rigid tool surface, and flexible hydrostatic pressure are considered using mesh normal vectors based on finite element of the sheet. Applied hydraulic pressure is also considered as a function of forming rate and time and treated as an external loading. The complete set of the governing relations comprising equilibrium and interfacial equations is approximately linearized for Newton-Raphson algorithm. In order to verify the validity of the developed finite element formulation, the axisymmetric bulge test is simulated. Simulation results are compared with other FEM results and experimental measurements and showed good agreements. In axisymmetric hydroforming processes of a disk cover, formability changes are observed according to the hydraulic pressure curve changes.

  • PDF

Three-dimensional dynamics of the moving load acting on the interior of the hollow cylinder surrounded by the elastic medium

  • Akbarov, S.D.;Mehdiyev, M.A.;Ozisik, M.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.185-206
    • /
    • 2018
  • This paper studies the non-axisymmetric 3D problem on the dynamics of the moving load acting in the interior of the hollow cylinder surrounded with elastic medium and this study is made by utilizing the exact equations of elastodynamics. It is assumed that in the interior of the cylinder the point located with respect to the cylinder axis moving forces act and the distribution of these forces is non-axisymmetric and is located within a certain central angle. The solution to the problem is based on employing the moving coordinate method, on the Fourier transform with respect to the spatial coordinate indicated by the distance of the point on the cylinder axis from the point at which the moving load acts, and on the Fourier series presentation of the Fourier transforms of the sought values. Numerical results on the critical moving velocity and on the distribution of the interface normal and shear stresses are presented and discussed. In particular, it is established that the non-axisymmetricity of the moving load can decrease significantly the values of the critical velocity.

A Study on Multi-stage Deep Drawing Processes Using Finite Element Method (유한요소법을 이용한 다단계 디프 드로잉 공정에 관한 연구)

  • 최병화;민동균;박태종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1021-1025
    • /
    • 2002
  • There have been many researches performed on the formability of axisymmetric or rectangular cup shapes in the deep drawing processes. But non-axisymmetric deep drawing processes rely upon empirical knowledge of experts in most cases. Especially, there have been few researches for multi-stage elliptical deep drawing processes. In this study, formability and thickness distributions of elliptical yoke products were predicted by using finite element analysis. The results of the analysis were compared with those of experiments for validity.

  • PDF

Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building II. Verification through Numerical Examples (원전 격납건물 돔 텐던의 축대칭 모델링 기법 II. 수치예제를 통한 검증)

  • Jeon Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.527-533
    • /
    • 2005
  • Axisymmetric modeling of the nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings, where the axisymmetric approximation is required for the actual non-axisymmetric tendon arrangements in the dome. In the preceding companion paper, some procedures are proposed for the domestic CANDU and KSNP type containments that can implement the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. In this paper, the proposed schemes are verified through some numerical examples comparing the results of the actual 3-dimensional model with those of some axisymmetric models. The results of the proposed axisymmetric analyses show relatively good agreements with the actual structural behavior especially for the CANDU type. Also, it is shown that proper level of the prestressing in a hoop direction plays an important role to predict the actual prestressing effect in the axisymmetric dome modeling. Finally, correction factors are discussed that can revise some approximations introduced in the derivations.

Application of the Visioplasticity Method to the Axisymmetric Bulk Deformation Processes (축대칭소성가공에 있어서의 변형가시화법의 응용에 대한 연구)

  • Bai, Duck-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.2
    • /
    • pp.31-42
    • /
    • 1985
  • The metal flow and the strain distribution is investigated for the steady state and non-steady state bulk deformation processes by using an improved visioplasticity method which includes the effective smoothing scheme. The comparison of various smoothing schemes leads to the selection of the five- point least square smoothing method which is employed to reduce the measurement errors. As a steady state forming process experiments are carried out for axisy- mmetric forward extrusion through conical and curved dies of various area reduc- tions using Aluminum and steel billets. Axisymmetric backward extrusion is chosen for a nonsteady state forming process. In axisymmetric forward extrusion the results from visioplasticity show that the curved die of a fourth-order polynomial renders more uniform distribution of strain rates and strains. Higher reduction leads to greater strain rates at the outer side of the billet. The visioplastic observation for axisymmetric backward extrusion as a non-steady state deformation process shows the concentration of higher strain at the inner wall of the extruded product. The visioplastic results in forward extrusion are in agreement with the computed results by the finite element method. It is thus shown that the visio- plasticity combined with a smoothing technique is an effective method to determine the pattern and the distribution of strain rates and strains.

  • PDF

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.