• Title/Summary/Keyword: non-Newtonian flow

Search Result 211, Processing Time 0.028 seconds

Rheological Properties of Biopolymer Produced by Bacillus coagulans CE-74 (Bacillus coagulans CE-74가 생산하는 Biopolymer의 물성)

  • Lee, Seon-Ho;Son, Gyu-Mok;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.2
    • /
    • pp.198-203
    • /
    • 2000
  • A highly viscous biopolymer from Bacillus coagulans CE-74 was purified and its rheological properties were studied The rheological properties of biopolymers produced by Bacillus coagulans CE-74 were studied at the temperature ranges with 20~8$0^{\circ}C$, at the concentration of 0.5~4.0%, at the pH ranges from 3 to 1 and at the shear rate fo 7.34~73.38 sec-1. The apparent viscosity of biopolymer was decreased with increasing shear rate, and thereby biopolymer showed pseudoplastic characteristics. Biopolymer solution showed a characteristic of non-Newtonian fluid properties. At the concentration of 1%, the consistency index and the flow behavior index were shown at 2.64 poise. sec11 and 0.8571, respectively. All dispersions were pseudoplastic fluids described accurately by Herschel-Bulkley model. The change of the biopolymer viscosity on pH showed the highest value at the pH 7.0 and it showed lower at acidic conditon that at alkaline condition comparatively.

  • PDF

Characteristics of Non-ionic Micellar and O/W Microemulsion Systems and Solubilization of Sudan IV (비이온성 미셀용액과 수중유형 마이크로에멀젼계의 특성 및 수단 IV의 가용화)

  • 지웅길;황성주;장은옥;현종목
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.495-505
    • /
    • 1995
  • The O/W microemulsion systems were made from 2 or 4% (w/w) oil (soybean oil, olive oil or isopropyl myristate) and 10, 15 or 20% (w/w) Brij 96. They were compared with micellar solution of equivalent surfactant concentration m therms of physicochemical properties, and the solubilization of sudan IV. They were characterized by dynamic light scattering, stability, surface tension, viscosity and rheogram. The mean diameters of O/W microemulsion systems were 10-15nm, and those of Brij 96 micellar solutions were 18-19 nm. Both of them were monodisperse systems. The O/W microemulsion systems showed Newtonian flow and their apparent viscosities were lower than those of micellar solutions. The surface tensions of O/W microemulsion systems were increased or decreased depending on the types of oil used, when compared with those of micellar solutions. The O/W microemulsion systems were very stable, and did not show any flocculation or aggregation. Their mean diameters were not changed after three months. But oxidation was observed in microemulsions without nitrogen gas at high temperature. There was a significant improvement in the sudan IV solubffimtion in micromulsion compared with that m the micellar solution containing equivalent concentration of surfactant. The size distribution and mean diameters of O/W micromulsions were not changed when sudan IV was solubilized.

  • PDF

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Changes in Rheological Properties of Culture Broth During the Biopolymer Production by Bacillus sp (Bacillus sp.에 의한 생물 고분자의 발효 중 배양액의 유변학적 특성 변화)

  • 이신영;이주하
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.340-346
    • /
    • 1996
  • Variations of rheological properties of culture broth during the production of biopolymer by an alkali tolerant Bacillus sp. were investigated. Correlations among the rheological characteristics of culture broth, cell growth and biopolymer production were examined. Rheology of the culture broth changed in the course of fermentation. The culture broth showed a non-Newtonian flow behavior, as the viscosity and pseudoplasticsity increased during the cultivation. The rheological parameters such as flow index, consistency index, yield stress and apparent viscosity during the cultivation were not influenced by the cell growth, but significantly related to the biopolymer synthesis. Changes in the rheological parameters of the broth were affected not only by the biopolymer concentration, but also by the progress of fermentation. Some rheological parameters showed maximum values just before the completion of biopolymer production and substrate consumption. Hence, it was shown that the rheological characteristics of the culture broth could be used as a good indicator for the detection of the progress or completion of fermentation.

  • PDF

Intraaneurysmal Blood Flow Changes for the Different Coil Locations (코일 위치에 따른 동맥류 내부 혈류유동의 변화)

  • 이계한;정우원
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.295-300
    • /
    • 2004
  • Coil embolization technique has been used recently to treat cerebral aneurysms. When a giant or a multilobular aneurysm are treated by roils, filling an aneurysm sac completely with coils is difficult and partial blocking of an aneurysm sac is inevitable. Blood flow characteristics, which nay affect the embolization process of an aneurysm sac, are changed by the locations of coils for the Partially blocked aneurysms. Blood flow fields are also influenced by the geometry of a parent vessel. In order to suggest the coil locations effective for aneurysm embolization, the blood flow fields of lateral aneurysm models were analyzed for the different coil locations and parent vessel geometries. Three dimensional pulsatile flow fields are analyzed by numerical methods considering non-Newtonian viscosity characteristics of blood. Flow rate into the aneurysm sac (inflow rate) and wall shear stress, which are suspected as flow dynamic factors influencing aneurysm embolization, are also calculated. Inflow rates were smaller and the low wall shear stress zones were larger in the neck blocked models compared to the dome blocked models. Smaller inflow and larger low wall shear stress zones in the distal neck blocked model imply that the distal neck should be the effective coil locations for aneurysm embolization.

Flocculation of Red Tide Organisms in Sea Water by Using an Ignited Oyster Shell Powder and Loess Combination (소성굴패각분말과 황토의 동시 사용에 의한 적조생물의 응집)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.716-722
    • /
    • 2003
  • This study determined the optimum dosage for coagulation reactions of red tide organisms (RTO) using a combination of ignited oyster shell powder (10sp) and loess and examined the electrokinetic and rheological characteristics of their flocs. Two kinds of RTO, Cylindrotheca closterium and Skeletonema costatum, were sampled in Masan Bay and cultured in the laboratory. Coagulation experiments were conducted using various concentrations of IOSP, loess, IOSP+1oess, RTO, and a jar tester RTO cell numbers were counted for both the supernatant and RTO culture solution. The removal rates increased rapidly with increasing IOSP concentrations up to 50 mg/L and loess concentrations up to 800 mg/L. A removal rate of $100\%$ was reached at 400 mg/L of IOSP and 6,400 mg/L of loess. The highest increment $(16.7\%)$ of the rates of coagulation reaction occurred using both IOSP and loess (50+200 mg/L) in comparison with IOSP alone. The rate of coagulation reaction using both IOSP and loess (50+200 mg/L), $90.6\%,$ was similar to employing either IOSP of 150 mg/L or loess of 3,200 mg/L. All of the coagulation liquids for RTO, IOSP (200 mg/L), loess (200 ma/L), and IOSP+1oess (200+200 mg/L) revealed non-Newtonian fluid properties and therefore their shear rate vs. shear stress curves were non-linear. The coagulation liquids revealed elastic body properties at a lower shear rate increasing in the following order: RTO, IOSP (200 mg/L), loess (200 mg/L), and IOSP+1oess (200+200 mg/L. IOSP+1oess (200+200 mg/L) especially demonstrated plastic flow properties at a lower shear rate.

Effect of Reaction Time on the Rheological Properties of Dextran Formed Solution Produced by Crude Dextransucrase from Leuconostoc rnesenteroides Sikhae (Leuconostoc mesenteroides Sikhae의 Crude Dextransucrase 반응시간에 따른 Dextran 생성액의 유변성)

  • 박춘상;이철호
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.316-323
    • /
    • 1992
  • Studies on the changes in rheological properties, molecular weight distribution and dextran yield after being reacted in lO%(w/w) sucrose concentration were performed with crude dextransucrase produced from Leuconostoc mesenteroides isolated from Sikhae. The reaction rate of dextran formation was monitored by sugar analysis with HPLC and by the changes in apparent viscosity. According to the periodate oxidation test, the dextran produced in this experiment was estimated to have 89% $\alpha$-(1->6) main linkages and 11% $\alpha$-(1->) side linkages. The rheological properties of the dextran solution formed changed with reaction time, and it was related to the changes in molecular weight distribution of dextran as determined by GPC analysis. As the reaction proceeded, the rheological behavior changed from Newtonian to non-Newtonian, showing Binghampseudoplastic and thixothropic flow behavior. The apparent viscosity of dextran formed solution increased with increasing reaction time, reached a maximum value of 2680 cP ($\gamma$=$33.75s^{-1}$, $25^{\circ}C$) by enzyme reaction for 8 hours, and then decreased. The temperature dependency of dextran formed solutions was well expressed by the Arrhenius equation and the activation energy reached a maximum value of 1.69 kcal/mole by enzyme reaction for 8 hours.

  • PDF

Visualization and Image Processing for Measurement of Propagational Velocity of Shear Front (유동장의 이동속도측정을 위한 가시화 및 영상처리 방안)

  • Kim Jae-Won;Han Sang-Hoon;Ahn Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1322-1328
    • /
    • 2005
  • The circulation flows passing through the Ekman boundary layer on the rotating disk and transfer the angular momentum into the interior region of the container. Consequently, the circulation enhances the momentum transfer and the interior fluid is divided by a propagating shear front. This investigation focuses on computer vision and image processing technique for analysis of Non-Newtonian Fluids. To visualize marching velocity shear front for the transient flow, a particular shaped particles and light are used. To validate the proposed method, quantitative image are compared with the optical data acquired by a direct measurement of LDV (Laser Doppler Velocimetry).

  • PDF

Spray Characteristics of Water-Gel Propellant by Impinging Injector (Water-Gel 모사 추진제의 충돌 분무 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Sang-Sun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.11-14
    • /
    • 2009
  • The implementation of gelled propellants systems offers high performance, thrust-control, energy management of propulsion, storability, and high density impulse of solid propulsion. Present study focused on the spray behavior of liquid sheets formed by impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are then compared with experiments conducted on spray images formed by impinging jets concerning with air-blast effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure, closed rim pattern shape appeared. As increasing air mass flow rate(decreasing GLR), spray breakup and atomization phenomenon better improved and spray structure instabilities for the effect of air-blast are also increased.

  • PDF

Rheological Properties of the Solutions of Incompatible Polymer Blends

  • Sohn, Jeong-In;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.4
    • /
    • pp.142-147
    • /
    • 1981
  • A blend polymeric system composed of poly(methyl methacrylate) (PMMA or PM) and polystyrene (PS) dissolved in chloroform was rheologically studied. The viscosities ${\eta}_{bl}$ of the blend system with various blending ratios ${\chi}$ changing from zero (pure PS solution) to unity (pure PMMA solution) were measured at $25{\circ}C$ as a function of shear rates ${\dot{s}}$ by using a Couette type viscometer. ${\eta}_{bl}$ at a given ${\dot{s}}$ decreased exponentially with ${\chi}$ reaching asymptotic constant value of ${\eta}_{bl}$ ; ${\eta}_{bl}$ at a given ${\chi}$ is greater at a smaller ${\dot{s}}$. These results are explained by using Ree-Erying's theory of viscosity, ${\eta}_{bl}=(x_1{\beta}_1/{\alpha}_1)_{b}_1+ (x_2{\beta}_2/{\alpha}_2)_{bl}[sinh^{-1}{\beta}_2(bl) {\dot{s}}]/{\beta}_2(bl){\dot{s}}$. The Gibbs activation energy ${\Delta}G_i^\neq$(i = 2 for non-Newtonian units) entering into the intrinsic relaxation time ${\beta}$ is represented by a linear combination ${\Delta}G_i^\neq(bl) ={\chi}{\Delta}G_i^{\neq}_{iPM}+(1-{\chi}){\Delta}G_i^{\neq}_{iPS}$;the intrinsic shear modulus$[[\alpha}_i]^{-1}$ is also represented by $[{\alpha}_i(bl)]^{-1}={\chi}[{\alpha}_{iPM}]^{-1}+(1-{\chi})[{\alpha}_{iPS}]^{-1}$ and the fraction of area on a shear surface occupied by the ith flow units $x_i(bl)$ is similarly represented, i.e., $x_i(bl) = {\chi}x_{iPM}+(1-{\chi})x_{iPS}$. By using these ideas the Ree-Eyring equation was rewritten which explained the experimental results satisfactorily.