• Title/Summary/Keyword: non-Abelian

Search Result 52, Processing Time 0.029 seconds

New Signature Invariant of Higher Dimensional Links

  • Ko, Ki Hyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.1 no.1
    • /
    • pp.85-90
    • /
    • 1988
  • We develope a signature invariant for odd higher dimensional links. This signature has an advantage that it is defined as a G-signature for a non-abelian group G so that it can distinguish two links whose different were not detected by other invariants defined on commutative set-ups.

  • PDF

LAPLACIAN SPECTRA OF GRAPH BUNDLES

  • Kim, Ju-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1159-1174
    • /
    • 1996
  • The spectrum of the Laplacian matrix of a graph gives an information of the structure of the graph. For example, the product of non-zero eigenvalues of the characteristic polynomial of the Laplacian matrix of a graph with n vertices is n times of the number of spanning trees of that graph. The characteristic polynomial of the Laplacian matrix of a graph tells us the number of spanning trees and the connectivity of given graph. in this paper, we compute the characteristic polynomial of the Laplacian matrix of a graph bundle when its voltage lie in an abelian subgroup of the full automorphism group of the fibre; in particular, the automorphism group of the fibre is abelian. Also we study a relation between the characteristic polynomial of the Laplacian matrix of a graph G and that of the Laplacian matrix of a graph bundle over G. Some applications are also discussed.

  • PDF

ON WEAKLY LOCAL RINGS

  • Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.28 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • This article concerns a property of local rings and domains. A ring R is called weakly local if for every a ∈ R, a is regular or 1-a is regular, where a regular element means a non-zero-divisor. We study the structure of weakly local rings in relation to several kinds of factor rings and ring extensions that play roles in ring theory. We prove that the characteristic of a weakly local ring is either zero or a power of a prime number. It is also shown that the weakly local property can go up to polynomial (power series) rings and a kind of Abelian matrix rings.

CONSTRUCTIONS OF SEGAL ALGEBRAS IN L1(G) OF LCA GROUPS G IN WHICH A GENERALIZED POISSON SUMMATION FORMULA HOLDS

  • Inoue, Jyunji;Takahasi, Sin-Ei
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.367-377
    • /
    • 2022
  • Let G be a non-discrete locally compact abelian group, and 𝜇 be a transformable and translation bounded Radon measure on G. In this paper, we construct a Segal algebra S𝜇(G) in L1(G) such that the generalized Poisson summation formula for 𝜇 holds for all f ∈ S𝜇(G), for all x ∈ G. For the definitions of transformable and translation bounded Radon measures and the generalized Poisson summation formula, we refer to L. Argabright and J. Gil de Lamadrid's monograph in 1974.

A CHARACTERIZATION OF THE GROUP A22 BY NON-COMMUTING GRAPH

  • Darafsheh, Mohammad Reza;Yosefzadeh, Pedram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.117-123
    • /
    • 2013
  • Let G be a finite non-abelian group. We define the non-commuting graph ${\nabla}(G)$ of G as follows: the vertex set of ${\nabla}(G)$ is G-Z(G) and two vertices x and y are adjacent if and only if $xy{\neq}yx$. In this paper we prove that if G is a finite group with $${\nabla}(G){\simeq_-}{\nabla}(\mathbb{A}_{22})$$, then $$G{\simeq_-}\mathbb{A}_{22}$$where $\mathbb{A}_{22}$ is the alternating group of degree 22.

ON THE RESIDUAL FINITENESS OF FUNDAMENTAL GROUPS OF GRAPHS OF CERTAIN GROUPS

  • Kim, Goansu
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.5
    • /
    • pp.913-920
    • /
    • 2004
  • We give a characterization for fundamental groups of graphs of groups amalgamating cyclic edge subgroups to be cyclic subgroup separable if each pair of edge subgroups has a non-trivial intersection. We show that fundamental groups of graphs of abelian groups amalgamating cyclic edge subgroups are cyclic subgroup separable, hence residually finite, if each edge subgroup is isolated in its containing vertex group.

APPROXIMATE FIBRATIONS AND NON-APPROXIMATE FIBRATIONS IN PL CATEGORY

  • Im, Young-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1077-1085
    • /
    • 1996
  • This paper provides examples which can not be approximate fibrations and shows that if $N^n$ is a closed aspherical manifold, $\pi_1(N)$ is hyperhophian, normally cohophian, and $\pi_1(N)$ has no nontrivial Abelian normal subgroup, then the product of $N^n$ and a sphre $S^m$ satisfies the property that all PL maps from an orientable manifold M to a polyhedron B for which each point preimage is homotopy equivalent to $N^n \times S^m$ necessarily are approximate fibrations.

  • PDF

REFLEXIVE PROPERTY ON IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1957-1972
    • /
    • 2013
  • The reflexive property for ideals was introduced by Mason and has important roles in noncommutative ring theory. In this note we study the structure of idempotents satisfying the reflexive property and introduce reflexive-idempotents-property (simply, RIP) as a generalization. It is proved that the RIP can go up to polynomial rings, power series rings, and Dorroh extensions. The structure of non-Abelian RIP rings of minimal order (with or without identity) is completely investigated.