• Title/Summary/Keyword: non-Abelian

Search Result 52, Processing Time 0.023 seconds

NON-ABELIAN TENSOR ANALOGUES OF 2-AUTO ENGEL GROUPS

  • MOGHADDAM, MOHAMMAD REZA R.;SADEGHIFARD, MOHAMMAD JAVAD
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1097-1105
    • /
    • 2015
  • The concept of tensor analogues of right 2-Engel elements in groups were defined and studied by Biddle and Kappe [1] and Moravec [9]. Using the automorphisms of a given group G, we introduce the notion of tensor analogue of 2-auto Engel elements in G and investigate their properties. Also the concept of $2_{\otimes}$-auto Engel groups is introduced and we prove that if G is a $2_{\otimes}$-auto Engel group, then $G{\otimes}$ Aut(G) is abelian. Finally, we construct a non-abelian 2-auto-Engel group G so that its non-abelian tensor product by Aut(G) is abelian.

A Survey of Public-Key Cryptography over Non-Abelian Groups

  • Lanel, G.H.J.;Jinasena, T.M.K.K.;Welihinda, B.A.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.289-300
    • /
    • 2021
  • Non-abelian group based Cryptography is a field which has become a latest trend in research due to increasing vulnerabilities associated with the abelian group based cryptosystems which are in use at present and the interesting algebraic properties associated that can be thought to provide higher security. When developing cryptographic primitives based on non-abelian groups, the researchers have tried to extend the similar layouts associated with the traditional underlying mathematical problems and assumptions by almost mimicking their operations which is fascinating even to observe. This survey contributes in highlighting the different analogous extensions of traditional assumptions presented by various authors and a set of open problems. Further, suggestions to apply the Hamiltonian Cycle/Path Problem in a similar direction is presented.

Cryptographic Protocols using Semidirect Products of Finite Groups

  • Lanel, G.H.J.;Jinasena, T.M.K.K.;Welihinda, B.A.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.17-27
    • /
    • 2021
  • Non-abelian group based cryptosystems are a latest research inspiration, since they offer better security due to their non-abelian properties. In this paper, we propose a novel approach to non-abelian group based public-key cryptographic protocols using semidirect products of finite groups. An intractable problem of determining automorphisms and generating elements of a group is introduced as the underlying mathematical problem for the suggested protocols. Then, we show that the difficult problem of determining paths and cycles of Cayley graphs including Hamiltonian paths and cycles could be reduced to this intractable problem. The applicability of Hamiltonian paths, and in fact any random path in Cayley graphs in the above cryptographic schemes and an application of the same concept to two previous cryptographic protocols based on a Generalized Discrete Logarithm Problem is discussed. Moreover, an alternative method of improving the security is also presented.

EXISTENCE THEOREM FOR NON-ABELIAN VORTICES IN THE AHARONY-BERGMAN-JAFFERIS-MALDACENA THEORY

  • Zhang, Ruifeng;Zhu, Meili
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.737-746
    • /
    • 2017
  • In this paper, we discuss the existence theorem for multiple vortex solutions in the non-Abelian Chern-Simons-Higgs field theory developed by Aharony, Bergman, Jafferis, and Maldacena, on a doubly periodic domain. The governing equations are of the BPS type and derived by Auzzi and Kumar in the mass-deformed framework labeled by a continuous parameter. Our method is based on fixed point method.

FINITE p-GROUPS ALL OF WHOSE SUBGROUPS OF CLASS 2 ARE GENERATED BY TWO ELEMENTS

  • Li, Pujin;Zhang, Qinhai
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.739-750
    • /
    • 2019
  • We proved that finite p-groups in the title coincide with finite p-groups all of whose non-abelian subgroups are generated by two elements. Based on the result, finite p-groups all of whose subgroups of class 2 are minimal non-abelian (of the same order) are classified, respectively. Thus two questions posed by Berkovich are solved.

ON THE TATE-SHAFAREVICH GROUPS OVER DEGREE 3 NON-GALOIS EXTENSIONS

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • Let A be an abelian variety defined over a number field K and let L be a degree 3 non-Galois extension of K. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming that III(A/L) is finite, we compute [III(A/K)][III($A_{\varphi}/K$)]/[III(A/L)], where [X] is the order of a finite abelian group X.

RESIDUAL FINITENESS AND ABELIAN SUBGROUP SEPARABILITY OF SOME HIGH DIMENSIONAL GRAPH MANIFOLDS

  • Kim, Raeyong
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.603-612
    • /
    • 2021
  • We generalize 3-manifolds supporting non-positively curved metric to construct manifolds which have the following properties : (1) They are not locally CAT(0). (2) Their fundamental groups are residually finite. (3) They have subgroup separability for some abelian subgroups.