• 제목/요약/키워드: non linear seismic response

검색결과 135건 처리시간 0.022초

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions

  • Abbasi, Saeed;Ardakani, Alireza;Yakhchalian, Mansoor
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.87-96
    • /
    • 2021
  • Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.

횡력저항시스템에 따른 비정형 초고층건물 내진성능평가 (Seismic Performance Evaluation of Complex-Shaped Tall Buildings by Lateral Resisting Systems)

  • 윤우석;이동훈;조창희;김은성;이동철;김종호
    • 한국전산구조공학회논문집
    • /
    • 제25권6호
    • /
    • pp.513-523
    • /
    • 2012
  • 본 연구는 횡력저항시스템별로 프로토타입 모델을 선정하고 지진지역과 비정형성에 따른 내진성능 영향력을 검토하였다. 프로토타입 모델은 다이아그리드 시스템과 브레이스튜브 시스템 그리고 아웃리거 시스템을 선정하였다. 또한 각 횡력저항시스템별 평면 비틀림 각도를 $0^{\circ}$, $1^{\circ}$($1.5^{\circ}$), $2^{\circ}$($3^{\circ}$) 씩 변화하여 내진성능을 검토하였다. 지진지역은 강진지역(LA), 약진지역(Boston)을 선정하였다. 선형응답해석은 프로토타입 모델의 풍변위, 고유주기를 검토하였다. Non-Linear Response History(NLRH) 해석에서는 밑면전단력, 층간변위비를 검토하였다. 검토결과 다이아그리드 시스템과 브레이스튜브 시스템 그리고 아웃리거 시스템 모두 평면 비틀림 각도가 증가할수록 건물 전체의 강성이 줄어들었다. 또한 평면 비틀림 각도가 증가할수록 풍변위와 고유주기 결과가 증가하고 건물 전체의 강성이 줄어들어 밑면전단력이 감소하였다. 끝으로, NLRH 해석 결과 강진과 약진지역 모두 Tall Building Initiative(TBI)의 Maximum Considered Earthquake(MCE)수준의 층간변위비 제한값 0.045를 만족하여 허용범위내의 내진성능을 만족하고 있는 것으로 나타났다.

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Performance of TMDs on nonlinear structures subjected to near-fault earthquakes

  • Domizio, Martin;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.725-742
    • /
    • 2015
  • Tuned mass dampers (TMD) are devices employed in vibration control since the beginning of the twentieth century. However, their implementation for controlling the seismic response in civil structures is more recent. While the efficiency of TMD on structures under far-field earthquakes has been demonstrated, the convenience of its employment against near-fault earthquakes is still under discussion. In this context, the study of this type of device is raised, not as an alternative to the seismic isolation, which is clearly a better choice for new buildings, but rather as an improvement in the structural safety of existing buildings. Seismic records with an impulsive character have been registered in the vicinity of faults that cause seismic events. In this paper, the ability of TMD to control the response of structures that experience inelastic deformations and eventually reach collapse subject to the action of such earthquakes is studied. The results of a series of nonlinear dynamic analyses are presented. These analyses are performed on a numerical model of a structure under the action of near-fault earthquakes. The structure analyzed in this study is a steel frame which behaves as a single degree of freedom (SDOF) system. TMD with different mass values are added on the numerical model of the structure, and the TMD performance is evaluated by comparing the response of the structure with and without the control device.

비선형 동적 해석을 통한 X형 가새골조 내 가새 부재의 에너지 소산 (Energy Dissipation Demand of Braces Using Non-linear Dynamic Analyses of X-Braced Frame)

  • 이강민
    • 한국강구조학회 논문집
    • /
    • 제15권4호통권65호
    • /
    • pp.379-388
    • /
    • 2003
  • 철골가새골조 내 가새 부재의 에너지 소산 등의 이력 특성을 조사하기 위하여 비선형 구조해석 프로그램인 DRAIN-2DX를 이용한 단층 구조물의 동적 해석을 수행하였다. 가새 부재의 세장비(KL/r) 및 구조물 반응 수정 계수(R)을 변수로 15개의 가새 부재가 설계되었고 인공지진을 포함 6개의 지진기록을 사용하여 구조해석을 수행하였다. 총 90개의 동적 해석 및 해석결과 비교 분석을 통하여 다음의 사실을 알 수 있었다. (1) 큰 반응 수정 계수(R)로 설계된 철골가새골조 내의 가새 부재가 구조물이 우수한 연성 거동을 통하여 큰 축적된 에너지 비$({\Sigma}E_C/E_T)$를 갖게 되리라 예상과는 달리 해석 결과 큰 R값으로 설계된 가새 부재가 좌굴 이후 심한 강도 저하를 보이고 작은 가새 부재력으로 설계되기 때문에 오히려 축적된 에너지 비$({\Sigma}E_C/E_T)$가 작았다. (2) 해석 결과 Lee and Bruneau (2002)에 의해 수집된 실험 결과들을 근거로한 실험 자료, 모두 세장한 가새 부재가 대부분의 경우 더 큰 연성을 갖기는 하지만 작은 축적된 에너지 비$({\Sigma}E_C/E_T)$를 갖고 있다.

A study on the liquefaction risk in seismic design of foundations

  • Ardeshiri-Lajimi, Saeid;Yazdani, Mahmoud;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.805-820
    • /
    • 2016
  • A fully coupled non-linear effective stress response finite difference (FD) model is built to survey the counter-intuitive recent findings on the reliance of pore water pressure ratio on foundation contact pressure. Two alternative design scenarios for a benchmark problem are explored and contrasted in the light of construction emission rates using the EFFC-DFI methodology. A strain-hardening effective stress plasticity model is adopted to simulate the dynamic loading. A combination of input motions, contact pressure, initial vertical total pressure and distance to foundation centreline are employed, as model variables, to further investigate the control of permanent and variable actions on the residual pore pressure ratio. The model is verified against the Ghosh and Madabhushi high acceleration field test database. The outputs of this work are aimed to improve the current computer-aided seismic foundation design that relies on ground's packing state and consistency. The results confirm that on seismic excitation of shallow foundations, the likelihood of effective stress loss is greater in deeper depths and across free field. For the benchmark problem, adopting a shallow foundation system instead of piled foundation benefitted in a 75% less emission rate, a marked proportion of which is owed to reduced materials and haulage carbon cost.

A neural network model to assess the hysteretic energy demand in steel moment resisting frames

  • Akbas, Bulent
    • Structural Engineering and Mechanics
    • /
    • 제23권2호
    • /
    • pp.177-193
    • /
    • 2006
  • Determining the hysteretic energy demand and dissipation capacity and level of damage of the structure to a predefined earthquake ground motion is a highly non-linear problem and is one of the questions involved in predicting the structure's response for low-performance levels (life safe, near collapse, collapse) in performance-based earthquake resistant design. Neural Network (NN) analysis offers an alternative approach for investigation of non-linear relationships in engineering problems. The results of NN yield a more realistic and accurate prediction. A NN model can help the engineer to predict the seismic performance of the structure and to design the structural elements, even when there is not adequate information at the early stages of the design process. The principal aim of this study is to develop and test multi-layered feedforward NNs trained with the back-propagation algorithm to model the non-linear relationship between the structural and ground motion parameters and the hysteretic energy demand in steel moment resisting frames. The approach adapted in this study was shown to be capable of providing accurate estimates of hysteretic energy demand by using the six design parameters.

원자로내부구조물의 동적해석을 위한 비선형모델 (A Non-linear Model for Dynamic Analysis of Reactor Internals)

  • Myung-J.Jhun;Sang-G.Chang;Song, Heuy-G.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.165-172
    • /
    • 1993
  • A non-linear mathematical model has been developed for the dynamic analysis of the reactor internals. The model includes a lumped mass and stiffness with non-linear members such as gap-spring. As hydrodynamic couplings have also been considered in the model, the effect of fluid/structure interaction between internals components due to their immersion in a confining fluid can be studied for the dynamic response analysis. The reactor internals responses for seismic and pipe break excitations have been calculated for the case of with-and without-hydrodynamic couplings.

  • PDF