• Title/Summary/Keyword: non flood season

Search Result 24, Processing Time 0.027 seconds

Wetland Construction: Flood Control and Water Balance Analysis

  • Kim, Duck-Gil;Kwak, Jae-Won;Kim, Soo-Jun;Kim, Hung-Soo;Ahn, Tae-Jin;Singh, Vijay P.
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.197-205
    • /
    • 2010
  • Recent years have witnessed increasing interest in wetland constructions in Korea as a flood control measure during the flood season and for consideration of the ecology during the non-flood season. In this study, hydraulic and hydrologic analyses were performed on a wetland construction plan for use as an alternative sustainable flood defense during the flood season, as well as a wetland that can protect the ecosystem during the non-flood season. The study area was the basin of the Topyeong-cheon stream, which is a tributary of the Nakdong River, including the Upo wetland, which is registered in the Ramsar Convention and the largest inland wetland in Korea. Wetlands were to be constructed at upstream and downstream of the Upo wetland by considering and analyzing seven scenarios for their constructions to investigate the effect of flood control during the flood season; it was found the best scenario reduced the flood level by 0.56 m. To evaluate the usefulness of the constructed wetlands during the non flood season, the water balance in the wetlands was analyzed, with the best scenario found to maintain a minimum water level of 1.3 m throughout the year. Therefore, the constructed wetlands could provide an alternative measure for flood prevention as well as an ecosystem for biodiversity.

Hydraulic and Hydrologic Analysis by Washland Construction (천변저류지 조성에 따른 수리.수문분석)

  • Kim, Duck-Gil;Kyoung, Min-Soo;Kim, Sang-Dan;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.483-489
    • /
    • 2008
  • Recently, we have a growing interest in the washland construction for the function of flood defense in flood season and also as an ecosystem in non flood season. Therefore this study performed the hydraulic and hydrologic analysis for washland construction plan as sustainable flood defense alternative in flood season and wetland application possibility. The study area is Topyoung-cheon basin in Changnyeong-gun, Gyeongnam. A Topyoung-cheon basin includes a Woopo wetland which is the largest nature wetland in Korea and a Topyoung-cheon is ond of the tributaries of Nakdong river. We assume that the artificial washland is constructed in upperstream and downstream of Woopo wetland, and In flood season, the hydraulic analysis for the investigation of the effectiveness of flood level mitigation is performed by HEC-RAS model. Simulation of model is performed from 7 scenarioes of washland construction. As the result in flood season, the flood level is reduced by maximum 0.56 meter as we construct the washlands by 7 scenarios. Also, we performed hydrologic analysis for the investigation of water balance in washland in non flood season using SWAT model. From the result of water balance analysis, we found that the minimum water level of washland was maintained in about 1.3 meter for one year.

Evaluation of flood control capacity of agricultural reservoirs during flood season (홍수기 농업용 저수지의 홍수조절용량의 평가)

  • Jang, Ik Geun;Lee, Jae Yong;Lee, Jeong Beom;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • We investigated flood control capacity of 484 agricultural reservoirs with storage capacity of over 1 million $m^3$ in South Korea. In general, agricultural reservoir secures flood control capacity by setting up limited water level during flood season from late June to mid-September. The flood control capacity of an agricultural reservoir during flood season can be divided into stable flood control capacity during non-flood season, stable flood control capacity associated with limited water level, and unstable flood control capacity associated with limited water level. In general, the flood control capacity significantly (P < 0.001) increased with reservoir capacity irrespective of type of spillway. The unstable flood control capacity accounted for about 20 % of reservoir capacity in the uncontrolled reservoirs. The study reservoirs showed flood control capacity of 0.60-65 billion (B) $m^3$ and stable flood control capacity of 0.43-47 B $m^3$, depending on the upper and lower limited water levels during the flood season. The stable flood control capacity of the gated reservoirs (0.29-0.33 B $m^3$) was about two times than that of reservoirs with uncontrolled spillways (0.14 B $m^3$). The ratios of stable flood control capacity to reservoir capacity for agricultural reservoirs range from 21 to 23 %, similar to that for Daecheong multipurpose dam. Moreover, the reservoirs with over 100 mm ratio of flood control capacity to watershed area accounted for 38 % of total gated reservoirs. The results indicate that many agricultural reservoirs may contribute to controlling flood in the small watersheds during the flood season.

The Reducing Effects Analysis of Floods through Washland Construction in Hwapocheon Basin (화포천 유역의 천변저류지 조성을 통한 홍수 저감효과 분석)

  • Jeong, Young-Won;Kim, Young-Do;Park, Jae-Hyun;Yoon, Byung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1489-1493
    • /
    • 2009
  • The disaster with many casualties every year by floods, and the economic loss will occur in Korea. The establishment and the recovery measures are necessary. In this research, we analyzed the effect for reducing flood by making washland in flood season, where is used as the wetland in non-flood season in Hwapocheon basin of Nakdong River, Korea. We prepared draingage of inner basin for flood in the past because the water elevation of Hwapocheon is lower than the water elevation of the Nakdong River. On the other hand, now a days, drainage capacity of the expansion and change of the height of the embankment have limitations, because of the increase in torrential rains. In this study, HEC-RAS is used for the unsteady flow routing for the effectiveness analysis of flood level mitigation in flood season. This analysis was performed according to the scenarios of washland construction location and its scale.

  • PDF

Flood Mitigation Planing for a Basin Using a Decision Tree Model (의사결정나무모형을 이용한 유역내 구조적 홍수방어 대안 도출)

  • Byeon, Sungho;Kang, Hyunjin;Han, Jeongwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.33-40
    • /
    • 2008
  • Intensive rainfalls in wet season (June~September) result in serious flood damage which is about 95% of natural hazard in Korea. Recently, in order to cope with repeated flood hazard, comprehensive flood control plans have been carried out in large basins in Korea. The plans suggest structural alternative plans for flood mitigation as well as non-structural plans. In this study, a practical method using a decision tree was developed to systematically allocate structural facilities for flood control, which maximizes the flood control capacity in a basin. This study also presents a practical guidance to organize structural defensive alternatives for a comprehensive flood control plan in a large basin.

Analyzing on the cause of downstream submergence damages in rural areas with dam discharge using dam management data

  • Sung-Wook Yun;Chan Yu
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.331-347
    • /
    • 2023
  • The downstream submergence damages caused during the flood season in 2020, around the Yongdam-dam and five other sites, were analyzed using related dam management data. Hourly- and daily-data were collected from public national websites and to conduct various analyses, such as autocorrelation, partial-correlation, stationary test, trend test, Granger causality, Rescaled analysis, and principal statistical analysis, to find the cause of the catastrophic damages in 2020. The damage surrounding the Yongdam-dam in 2020 was confirmed to be caused by mis-management of the flood season water level. A similar pattern was found downstream of the Namgang- and Hapcheon-dams, however the damage caused via discharges from these dams in same year is uncertain. Conversely, a different pattern from that of the Yongdam-dam was seen in the areas downstream of Sumjingang- and Daecheongdams, in which the management of the flood season water level appeared appropriate and hence, the damages is assumed to have occurred via the increase in the absolute discharge amount from the dams and flood control capacity leakage of the downstream river. Because of the non-stationarity of the management data, we adapted the wavelet transform analysis to observe the behaviors of the dam management data in detail. Based on the results, an increasing trend in the discharge amount was observed from the dams after the year 2000, which may serve as a warning about similar trends in the future. Therefore, additional and continuous research on downstream safety against dam discharges is necessary.

Daily Rainfall Simulation by Rainfall Frequency and State Model of Markov Chain (강우 빈도와 마코프 연쇄의 상태모형에 의한 일 강우량 모의)

  • Jung, Young-Hun;Kim, Buyng-Sik;Kim, Hung Soo;Shim, Myung-Pil
    • Journal of Wetlands Research
    • /
    • v.5 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • In Korea, most of the rainfalls have been concentrated in the flood season and the flood study has received more attention than low flow analysis. One of the reasons that the analysis of low flows has less attention is the lacks of the required data like daily rainfall and so we have used the stochastic processes such as pulse noise, exponential distribution, and state model of Markov chain for the rainfall simulation in short term such as daily. Especially this study will pay attention to the state model of Markov chain. The previous study had performed the simulation study by the state model without considerations of the flood and non-flood periods and without consideration of the frequency of rainfall for the period of a state. Therefore this study considers afore mentioned two cases and compares the results with the known state model. As the results, the RMSEs of the suggested and known models represent the similar results. However, the PRE(relative percentage error) shows the suggested model is better results.

  • PDF

Analysis of Tidal Asymmetry and Flood/Ebb Dominance around the Yeomha Channel in the Han River Estuary (한강하구 염하수로 주변에서의 조석·조류 비대칭과 창·낙조 우세 분석)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.915-928
    • /
    • 2012
  • Han River estuary (HRE) is located at the middle of the western coast of Korea, and tidal currents were measured at 4 stations in this estuary during the winter season, and previously observed tide data was analyzed. The results of amplitude ratio of $M_4/M_2$ showed that increasing upward to estuary in the HRE. Tide harmonic constants of relative phase $2M_2-M_4$ represent flood dominance, with under 180 degree. But this method has a limit of analysis that typically based on the non-linear distortion of the tidal current in tidal lagoon system where freshwater discharge is assumed to be relatively small. The results of statistically tidal current data indicated that ebb current velocity would be great unlike tide data. Ebb and flood duration time is calculated by slack time of tidal current showed that ebb duration time is longer than flood. The results of correlation of analysis show high value (0.9) between tidal current stations from Incheon harbor to north entrance of Yeomha channel. We reconstructed to find the reasons for the features of ebb dominance the results of harmonic analysis. As major component ($M_2$) in combination with shallow water component ($M_4$), the tidal curve was presented flood dominance that has a flood current is stronger. However, these curve were changed to ebb dominance add up the non-harmonic components that had ebb direction flow by calculated tidally averaged current. The characteristic of enhancement on ebb is showed around the Yeomha channel in the HRE, because averaged flow which acts seaward such as long-term tidal current components due to non-linear effect and freshwater which overcome the flood current.

2-D Hydrodynamic Analysis using EFDC in the Nakdong River - Focused on Velocity and Arrival Time Between Weirs - (EFDC 모형을 이용한 낙동강에서의 2차원 수리해석 - 보 구간의 유속 및 도달시간 중심으로 -)

  • KIM, Beom-Jin;KIM, Byung-Hyun;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.36-52
    • /
    • 2020
  • This study performed 2-D(two-dimensional) hydrodynamic analysis using EFDC in the Nakdong River. For the simulation of the flood season and non-flood season, the measured data including water level, weir outflow and tributary inflow were used, and the accuracy and applicability of the model were verified by comparing the measured water level and computed one. In addition, statistical quantitative assessment of the model performance was performed by estimating PBIAS, RSR, and RMSE for the computed water level. Then, the average velocity for each section between weirs was calculated by applying constant discharge conditions, and it was compared and verified with the measured velocity by Hydrological Survey Center. In this study, a simple method for estimating the arrival time was proposed, and it is expected that it will be practically applicable in field practices such as flood forecasting and warning.

Evaluation of flexible criteria for river flow management with consideration of spatio-temporal flow variation (시·공간적 유량 변화를 고려한 탄력적 하천관리 기준유량 산정 및 평가)

  • Park, Jung Eun;Kim, Han Na;Ryoo, Kyong Sik;Lee, Eul Rae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.673-683
    • /
    • 2016
  • An Idea to estimate flexible criteria for river water use permits was proposed that takes the spatio-temporal flow variation along the river into account, which was applied to the Keumho River, one of the tributary of the Nakdong River in Korea. This idea implies the temporal division of four periods with different criteria, combining flood/non-flood seasons and irrigation/non-irrigation periods, while a single one has been applied throughout the year in the current practice. Through flow regime analysis of daily natural flow simulations at Dongchon and Seongseo, the control points of the study area, Q355 and 1Q10 for non-flood and non-irrigation period, Q275 for non-flood and irrigation period, Q185 for flood and irrigation period were suggested respectively. So, those values that subtract instream flow were determined as the flexible criteria in each season. From the comparison of current practice and the proposed method, it was estimated that $10.6\;million\;m^3/year$ is available for more water use permits without additional development of water storage. Therefore, it is conceived that flexible criteria for river water use permission suggested in this study can contribute to improve the national policies for more efficient water resources management in the future.