• Title/Summary/Keyword: non C-13 hydroxylation pathway

Search Result 6, Processing Time 0.021 seconds

Changes in Endogenous Gibberellin Contents during Bulb Development Period in the Cold-type Cultivar of Garlic (Allium sativum L.) of Korea (한지형 마늘의 인경 발육 과정에서 내생 지베렐린류의 함량변화)

  • Sohn, Eun-Young;Kim, Yoon-Ha;Kim, Byung-Su;Seo, Dong-Hwan;Lee, Hyun-Suk;Lee, In-Jung
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.750-756
    • /
    • 2010
  • This study was performed to investigate the role of phytohormones in the bulbing of garlic in order to assess the yield and quality. The effect on endogenous plant hormones such as gibberellin (GA) content was also examined during growth stage i.e. clove differentiation to bulbing in garlic. More than 18 gibberellins in garlic were identified with extensive gas chromatograph-mass spectrometry-selected ion monitoring (GC-MS-SIM) quantitative analysis. The results showed that GAs were biosynthesized by both non C-13 hydroxylation pathway (NCH) and early C-13 hydroxylation pathway (ECH) in garlic plant. It was also revealed that NCH pathway leading to synthesis of bioactive $GA_4$ was the more prominent GA biosynthesis pathway than ECH pathway in which bioactive $GA_1$ was synthesized. Total GAs level was gradually increased from clove differentiation to bulbing and later decreased, which portrays the active role of GA in differentiation. The biosynthesis ratio of bioactive $GA_4$ and $GA_1$ concentration was similar to that of total GAs content, which was closely related with bulb development in garlic.

Identification of Endogenous Gibberellins by Feeding of [$^{14}\textrm{C}$] $\textrm{GA}_{12}$ in Chinese Yam, Dioscorea opposite

  • Lee, In-Jung;Kim, Sang-Kuk;Lee, Sang-Chul;Lee, Bong-Ho;Jang, Soo-Won;Park, Tae-Shik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.68-72
    • /
    • 2003
  • The metabolism of [$^{14}\textrm{C}$] $\textrm{GA}_{12}$ in the Chinese yam (Dioscorea opposita Thunb. var. Tsukune) was examined to determine the identification of endogenous gibberellins. [$^{14}\textrm{C}$] $\textrm{GA}_{12}$ was metabolized to $\textrm{GA}_{53}$, $\textrm{GA}_{44}$, $\textrm{GA}_{19}$, $\textrm{GA}_{20}$, $\textrm{GA}_1$, $\textrm{GA}_8$, $\textrm{GA}_{15}$, $\textrm{GA}_{24}$, $\textrm{GA}_9$, $\textrm{GA}_{36}$ and $\textrm{GA}_4$. Radioactivity of GAs in non C-13 hydroxylation route was five-fold higher than that of early C-13 hydroxylation in analyzed GA-metabolites. Radioactivity of $\textrm{GA}_4$ was always four times higher than that of $\textrm{GA}_1$ at every feeding time. $\textrm{GA}_1$ radioactivity has always a lower level to below 200 DPM. The major pathway of endogenous GA metabolism in seedlings of the Chinese yam might be the non C-13 hydroxylation pathway.

Microbial Degradation of $^{14}C-2$, 6-Diethylaniline in Soil and in Pure Culture ($^{14}C-2$, 6-Diethylaniline의 토양미생물에 의한 분해)

  • Lee, Jae-Koo;Ryu, In-Soo
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.126-134
    • /
    • 1982
  • When $^{14}C-2$, 6-Diethylaniline (2, 6-DEA) was incubated aerobically in soil, $^{14}CO_2$ evolved from non-sterile soil A and B was 6.5 and 10.1%, respectively, in the 21st week. Methanol could extract 3.1 and 13.5% of the radioactivity from soil A and B, respectively, 2, 6-Diethylacetanilide was detected as a degradation product in soil. Chaetomium globosum produced 2, 6-diethyl-p-benzoquinone as a degradation product in pure culture. A possible pathway was proposed to include p-hydroxylation of 2, 6-DEA, formation of quinoneimine, and the subsequent hydrolysis with the release of ammonia.

  • PDF

Gibberellins-Producing Rhizobacteria Increase Endogenous Gibberellins Content and Promote Growth of Red Peppers

  • Joo Gil-Jae;Kim Young-Mog;Kim Jung-Tae;Rhee In-Koo;Kim Jin-Ho;Lee In-Jung
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.510-515
    • /
    • 2005
  • The growth of red pepper plants was enhanced by treatment with the rhizobacterium, Bacillus cereus MJ-1. Red pepper shoots showed a 1.38-fold increase in fresh weight (fw) and roots showed a 1.28-fold fw gain. This plant growth-promoting rhizobacterium (PGPR) has been reported to produce gibberellins (GAs). Other GAs-producing rhizobacteria, Bacillus macroides CJ-29 and Bacillus pumilus CJ-69, also enhanced the fw of the plants. They were less effective than B. cereus MJ-1, though. The endogenous GAs content of pepper shoots inoculated with MJ-1 was also higher than in shoots inoculated with CJ-29 or CJ-69. When inoculated with MJ-1, bacterial colonization rate of the roots was higher than that of roots inoculated with CJ-29 or CJ-69. These results support the idea that the plant growth-promoting effect of the bacteria also positively related with the efficiency of root colonization by the bacteria. In addition, we identified the major endogenous GAs of the red pepper as originating from both the early C-13 hydroxylation and the early non C-13 hydroxylation pathways, with the latter being the predominant pathway of GA biosynthesis in red pepper shoots.

Effects of Foliar-sprayed Diniconazole on Contents of Endogenous Gibberellic Acids and Abscisic Acid in Lilium davuricum (Diniconazole 엽면살포가 날개하늘나리의 내생 GA 및 ABA 함량에 미치는 영향)

  • Eum, Sun-Jung;Park, Kyeung-Il;Lee, In-Jung;Choi, Young-Jun;Oh, Wook;Kim, Kiu-Weon
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.165-171
    • /
    • 2011
  • Plant growth retardants reduce the plant height by inhibiting stem elongation in Lilium davuricum. To investigate the plant hormones related to stem elongation, we sprayed 50 $mg{\cdot}L^{-1}$ diniconazole to young plants of L. davuricum and quantified the contents of endogenous gibberellic acids (GA) and abscisic acid (ABA). In GA biosynthesis, L. davuricum had not only the early C-13 hydroxylation ($GA_{19}{\rightarrow}GA_{20}{\rightarrow}GA_1$) pathway resulting in $GA_1$ as the active form but also the non C-13 hydroxylation (NCH, $GA_{12}{\rightarrow}GA_{24}{\rightarrow}GA_9{\rightarrow}GA_4$) with $GA_4$ as the active form. However, the main pathway was NCH because $GA_4$ concentration of 55 $ng{\cdot}g^{-1}$ dry wt was much higher than $GA_1$ content of 0.23 $ng{\cdot}g^{-1}$ dry wt in control plant. Diniconazole inhibited GA biosynthesis through NCH pathway from its early stage. $GA_{12}$ content decreased by diniconazole up to 6% level of that of control and this effect continued to $GA_4$. Diniconazole reduced $GA_{12}$ content by 12.7 $ng{\cdot}g^{-1}$ dry wt, whereas that of control plant was 213.8 $ng{\cdot}g^{-1}$ dry wt. ABA content decreased up to one third of control by diniconazole application. From the contents of endogenous $GA_4$, $GA_1$, and ABA in this study, we could conclude that diniconazole reduces the plant height by inhibiting $GA_4$ biosynthesis in L. davuricum.

Proximate Chemical Composition and Endogenous Gibberellins of Chufa (Cyperus esculentus L.) in Upland and Wetland

  • Kim, Sang-Kuk;Choi, Hong-Jib;Kang, Sang-Mo;Lee, In-Jung;Kim, Hak-Yoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.94-98
    • /
    • 2011
  • Proximate chemical components (protein, oil, carbohydrate, ash, fiber, and starch) were determined from tubers grown in upland and wetland conditions. The contents of crude protein, oil, carbohydrate, and starch were higher in upland condition than in wetland condition. Eight gibberellins were commonly identified and quantified in leaves and tuber of chufa grown in wetland and upland field during growing season. Gibberellin content was always higher specifically in the leaves and tubers grown in wetland condition than in those grown in upland condition. The current knowledge of gibberellin biosynthesis suggests that the two endogenous bio-active gibberellins both $GA_1$ and $GA_4$ are differently metabolized according to cultural conditions. Major gibberellin biosynthesis route is ascertained dominantly the non C-13 hydroxylation pathway leading $GA_4$ in chufa plants.