• Title/Summary/Keyword: nominal stress

Search Result 193, Processing Time 0.033 seconds

Experimental Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 1) - (동적하중 하에서의 강도적 불균질재의 연성크랙 발생거동의 실험적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제1보) -)

  • ;Mitsuru Ohata;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.575-581
    • /
    • 2003
  • It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on ductile crack initiation behavior. Also, the ductile crack initiation testing were conducted under static and dynamic loading using round bar specimens with circumferential notch and strength mis-matching. The result showed that the nominal strain at ductile crack initiation of circumferential notch specimens small then the round bar specimens for effect of geometrical discontinuity. Also, the nominal strain at ductile crack initiation was decreased with decrease of notch root radius of curvature.

Mechanical characteristics of involute-circular arc composite tooth profile (인벌류우트-圓弧 合成齒形의 諸特性)

  • 변준형;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.870-875
    • /
    • 1986
  • In this study, full-rounded tip curve of rack and its mating fillet curve of pinion in Involute-circular arc composite tooth profile are derived. Mechanical characteristics are calculated analytically, i.e., Specific sliding, Nominal bending stress at working root circle and the Contact factor of the arc of contact in circular arc part to the arc of double contact. These characteristics compared with standard involute tooth profile are improved in circular arc part of composite tooth profile. To obtain more efficient composite tooth profile, we studied these characteristics with regard to the changes of unwound angle and radius of circualr arc. And a design method of composite tooth profile is suggested. Composite tooth profile are compared with standard involute tooth profile.

A Study on Stress Analysis of Orthotropic Composite Cylindrical Shells with a Circular or an Elliptical Cutout

  • Ryu, Chung-Hyun;Lee, Young-Shin;Park, Myoung-Hwan;Kim, Young-Wann
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.808-813
    • /
    • 2004
  • The stress analysis on orthotropic composite cylindrical shells with one circular or one elliptical cutout subjected to an axial force is carried out by using an analytical and experimental method. The composite cylindrical shell governing equation of the Donnell's type is applied to this study and all results are presented by the stress concentration factor. The stress concentration factor is defined as the ratio of the stress on the region around a cutout to the nominal stress of the shell. The stress concentration factor is classified into the circumferential stress concentration factors and the radial stress concentration factors due to the cylindrical coordinate of which the origin is the center of a cutout. The considered loading condition is only axial tension loading condition. In this study, thus, the maximum stress is induced on perpendicular region against axial direction, on the coordinate. Various cutout sizes are expressed using the radius ratio, (equation omitted), which is the radius of a cutout over one of the cylindrical shell. Experimental results are obtained using strain gages, which are attached around a cutout of the cylindrical shell. As the result from this study, the stress concentration around a cutout can be predicted by using the analytical method for an orthotropic composite cylindrical shell having a circular or an elliptical cutout.

A Study on the Evaluation of Fatigue Strength of Welded Lap Joint with Element Stress Approach (요소 응력을 이용한 겹침 용접부의 피로 강도 평가에 관한 연구)

  • Kim, Hyeon-Su;Shin, Sang-Beom;Kim, Myung-Hyun;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.61-65
    • /
    • 2014
  • The purpose of this study is to evaluate the applicability of the element stress to establish S-N design curve for the welded lap joint with thin plates below 2mm thickness. In order to do it, the extensive fatigue tests of the welded lap joints with INVAR alloy were performed. With the results, the deign S-N curves for the lap-weld were established by using the reference stresses such as the nominal stress range at the weld throat area, hot spot stress range and element stress range, and compared with regard to the standard deviation. The standard deviation of S-N curves with element stress range was less than that of S-N curves with other reference stresses. In addition, FEA results show the amount of the element stress is less sensitive to mesh size. Based on the results, it can be concluded that the element stress is to be used as the reference stress for the design S-N curves of the welded lap joint.

Determination of Nominal Moment of Strengthening Beam with Carbon Fiber Sheets Using Strength Method (강도설계법으로 산정된 탄소섬유시트 보강 철근콘크리트 보의 공칭 휨모멘트)

  • 조백순;정진환;김성도;박대효;이우철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.593-598
    • /
    • 2002
  • Routinely, strength method for the determination of the nominal moment of reinforced concrete beam is assumed to also be suitable for strengthening beams with carbon fiber sheets since typically strengthening beams compromise 98% by volume of reinforced concrete. Flexural capacity of strengthening beam is absolutely dependent upon the type of reinforcement materials, amount of reinforcement, anchoring system, adhesion capacity between reinforcement material and concrete. Therefore, it might be incorrect to use strength method for analysis and design of strengthening beam without considering the differences in the load-deflection curves, mechanism of failure, state of stress distribution, failure strain of the reinforcement. An flexural analysis based on force equilibrium and strain comparability has been developed for strengthening beam. Systematic experimental investigations are compared with analytical results. Then, the adaptation of strength method for strengthening beam have also been discussed.

  • PDF

Fatigue Life Evaluation by ${\sigma}-N$ and ${\epsilon}-N$ Approaches Considering Residual Stresses (잔류응력을 고려한 국부변형률과 공칭응력 기준 피로수명 평가)

  • Goo, Byeong-Choon;Yang, Sung-Yong;Seo, Jung-Won;Jun, Hung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.342-347
    • /
    • 2004
  • To evaluate the fatigue lives of welded joints taking into residual stress relaxation, two approaches are applied. One is based on the conventional local strain analyses. The other is based on a model developed by the authors. In the first approach, the Ramberg-Osgood relation, Lawrence model and S.W.T. parameter are used. In the second approach, The S-N curve for a welded joint is deduced from that of the parent material. Residual stress relaxation obtained by finite element analysis is considered. Finally, we evaluate the fatigue lives for four weld details using the two approaches.

  • PDF

Sensitivity Analyses of Failure Probability of Pipes in Nuclear Power Plants using PRO-LOCA (PRO-LOCA를 이용한 원전 배관의 파손확률에 대한 민감도 해석)

  • Cho, Young Ki;Kim, Sun Hye;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.136-142
    • /
    • 2014
  • Recently a new version of PRO-LOCA program was released. Using the program, failure probability of pipes can be evaluated considering fatigue and/or stress corrosion crack growth and the effects of various parameters on the integrity of pipes in nuclear power plants can be evaluated quantitatively. The analysis results can be used to establish an inspection plan and to examine the effects of important parameters in a maintenance plan. In this study, sensitivity analyses were performed using the program for several important parameters including sampling method, initial crack size, number of initial fabrication flaws, operation temperature, inspection interval, operation temperature and nominal applied bending stress. The effect of parameters on the leak and rupture probability of pipes was evaluated due to fatigue or stress corrosion crack growth.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENTS BY MECHANICAL LOADING(I) - EXPERIMENTAL EXAMINATION -

  • Jang, Kyoung-Bok;Yoon, Hun-Sung;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.372-377
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF

Finite Element Analysis and Measurement on the Release of Residual Stress and Non-linear Behavior in Weldments by Mechanical Loading(I) -Experimental Examination-

  • Jang, K.B.;Yoon, H.S.;Cho, S.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.40-44
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF

Estimation Fatigue Life of Weldments by Notch Stress Approaches (노치응력법에 의한 용접 연결부 피로수명 추정에 관한 연구)

  • Yang, Park-Dal-Chi;Song, Joon-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.47-51
    • /
    • 2011
  • This paper analyzes the fatigue-life of welded joints using the notch stress approach. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. The actual bead shape is complex and 3-dimensional. It may also greatly influence the fatigue strength. In this study, the welded shape was modeled using a 3D-scanner. The critical distance method was adopted in the evaluation of the fatigue effective notch stress for the weldments. Fatigue life tests were performed to verify the present method of fatigue life estimation for two types of welded plates with longitudinal attachments. The estimated results of the present methods were applied to the results of the experiment. The results of the analysis showed that the scatter of fatigue-life for the experimental data expressed in the nominal stress was significantly reduced by applying the effective fatigue stress of the present study.