• Title/Summary/Keyword: nominal stress

Search Result 192, Processing Time 0.029 seconds

Life Evaluation of Long-time Used 1Cr-0.5Mo Main Steam Pipe (장기사용된 1Cr-0.5Mo 주증기관의 수명평가)

  • 백수곤;홍성인
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • Most fossil power plants and many critical components will be approaching the end of their nominal design life. At the same time, utilities are finding it economically attractive to extend the use of these plants for several more years, Especially Main steam pipe that operated under high temperature and pressure, often under the more severe operating conditions associated with cycling duty, is most important pipe system and critical component in fossil power plant. To extend the viability of older pipe system and to improve the operation and maintenance reliability, some technologies of precise diagnosis and life management have evolved out of the necessity. The purpose of this study is to descrive the related technologies and show the example of one power plants. The purpose of this study is to descrive the related technologies and show the example of one power plants. The stress analysis was done using ANSYS FEM Code. The branch area from main steam to turbine was the high stressed zone. To evaluate the degradation of the pipe material, replica, visual check, magnetic test, hardness test were done at the welding spot. The degradation level of welding point was E/F, so the remaining life of the welded area was about 0-25%.

  • PDF

A Study on the Adequate Radius of Circular Arc in the Involute-Circular Arc Composite Tooth Profile (인벌류우트-원호 합성치형의 적정 원호반경에 대한 연구)

  • 정인승;손지원;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.296-303
    • /
    • 1987
  • The composite gear which is composed of involute curve and circular arc has been studied. In the vicinity of pitch point, its profile is an involute curve, and in the dedenum, a circular arc. The curve in the dedendum is generated by the circular arc of the mating gear. Though the available range between minimum and maximum radius of circular arc can be given by existing tooth profile equation, there was no formulation which relates design parameters to the desired radius. It is attempted to get the formula for the radius of circular arc as a function of design parameters, such as unwounded angle, number of teeth, module, and pressure angle. The radius of circular arc, the chordal tooth thickness at working root circle, nominal bending stress, Hertz stress and contact ratio obtained from derived formula are compared with those of the existing design criteria. And these are compared with those of involute gear.

Fracture Behavior of Fiber Reinforced Composites under tensile and Bending Loadings (섬유강화 복합재료의 인장 및 굽힘에 의한 파괴)

  • Nam, Gi-U;Mun, Chang-Gwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.45-52
    • /
    • 1994
  • The study was conducted to evaluate reliability of the longitudinal tensile properties of unidirectional carbon fiber reinforced composites. Two kinds of carbon fiber reinforced composites laminates were tested in order to examine the factors of variability and have the information concerning reliability improvement. Temperature dependence of the strength and its variability were investigated by means of testing at two kinds of temperatures. Statistical distributions of the respective mechanical properties were obtained from the tensile tests. As a result, strength of composites was directly proportional to the ultimate strain and was not proportional to the elastic modulus. The fracture behavior in bending of notched plate was studied for a composite material. The uniform bending tests of notched plates have been carried out for a wide range of notch radii. The experiment shows that the nominal stress at failure decreased with decreasing notch radius and it approaches a constant value when the notch radius is less than about 0.3mm. The critical maximum stress is governed by notch root radius alone in the case of a constant thickness of specimen.

  • PDF

Cyclic behavior of jumbo reduced beam section connections with heavy sections: Numerical investigation

  • Qi, Liangjie;Liu, Mengda;Shen, Zhangpeng;Liu, Hang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.183-196
    • /
    • 2022
  • Reduced beam section (RBS) moment connections used in special moment resisting frames are currently limited to beam sections that are not larger than nominal depths of 920 mm, weight of 447 kg/m and flange thickness of 44 mm. Due to the higher demand for structural components with jumbo sections, which can potentially be applied in the transfer girders in long-span building structures, the newly available steel heavy members are promising. To address this issue, advanced numerical models are developed to fully evaluate the distribution of stresses and concentrations of plastic strains for such jumbo RBS connections. This paper first presents a brief overview of an experimental study on four specimens with large beam and column sections. Then, a numerical model that includes initial imperfections, residual stresses, geometric nonlinearity, and explicitly modeled welds is presented. The model is used to further explore the behavior of the test specimens, including distribution of stresses, distribution of plastic strains, stress triaxiality and potential for fracture. The results reveal that the stresses are highly non-uniform across the beam flange and, similarly, the plastic strains concentrate at the extreme fiber of the bottom flange. However, neither of these phenomena, which are primarily a function of beam flange thickness, is reflected in current design procedures.

Crashworthy behaviour of cellular polymer under constant impact energy (동일 충격 에너지 조건하에서 다공질 고분자의 충격거동에 관한 연구)

  • Jeong, Kwang-Young;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • Characterisation of the stress-strain relationship as well as crashworthiness of cellular polymer was investigated under constant impact energy with different velocities, considering inertia and strain rate effects simultaneously during the impact testing. Quasi-static and impact tests were carried out for two different density (64 $kg/m^3$, 89 $kg/m^3$) cellular polymer specimens. Also, the equations, coupled with the Sherwood-Frost model and the Impulse-Momentum theory, were employed to build the constitutive relation of the cellular polymer. The nominal stress-strain curves obtained from the constitutive relation were compared with results from impact tests and showed to be in good agreement.

A Study on the Processing of Anti-Corrosive Composites for Propeller Shaft of the Ship and the Evaluation of Its Static and Fatigue Properties (선박용 프로펠러축 방식처리용 복합재료의 제조와 그 정적 및 피로특성 평가에 관한 연구)

  • 김윤해;왕지석;배창원
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 1998
  • Kind 1 propeller shaft in ships is the shaft which is provided with effective measures against corrosion by sea water, or the shaft which is made of approved corrosion resistance materials. The propeller shaft other than specified above is Kind 2. Thus, this study is mainly concerned with the resistance to fatigue damage in sea water against stress concentrations due to the notches. The results obtained can be summarized as follows; (1) The stress increases with curing time, however, when the curing time reaches at 96 hours the stress becomes a constant value. The elongation decreases with curing time, however, when the curing time reaches at 48 hours the elongation becomes a constant value. Thus, in case of FRP coating on propeller shaft, it is necessary to cure for 48 hours at least. (2) The relation of $\sigma$$_n$-K$_t$ is to be classified into two parts, which is a part where fracture nominal stress, $\sigma$$_n$, decreases with increasing $K_t$, and a part where $\sigma$$_n$ is nearly constant independent of $K_t$. (3) According to a linear notch mechanics, the measure of severity controlling the fracture in notched FRP body is the notch root radius, $\rho$. The notched static strength of an arbitrary specimen will be estimated from $\sigma$$_{max}$ -1/$\rho$ curve. (4) Through the observation of cross section after fatigue test, the part of interface was kept good condition irrespective of loading conditions.

  • PDF

Out-Of-Plane Bending Stiffnesses in Offshore Mooring Chain Links Based on Conventional and Advanced Numerical Simulation Techniques (기존/개선 수치 해석 기법을 이용한 계류 체인 링크의 면외 굽힘 강성)

  • Choung, Joonmo;Lee, Jae-bin;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.297-309
    • /
    • 2018
  • After an accident involving mooring link failures in an offloading buoy, verification of the fatigue safety in terms of the out-of-plane bending (OPB) and in-plane bending (IPB) moments has become a key engineering item in the design of various floating offshore units. The mooring links for an 8 MW floating offshore wind turbine were selected for this study. To identify the OPB stiffness (OPB moment versus interlink angle), a numerical simulation model, called the 3-link model, is usually composed of three successive chain links closest to the fairlead or chain hawse. This paper introduces two numerical simulation techniques for the 3-link analyses. The conventional and advanced approaches are both based on the prescribed rotation approach (PRA) and direct tension approach (DTA). Comparisons of the nominal stress distributions, OPB stiffnesses, hotspot stress curves, and stress concentration curves are presented. The multiple link analyses used to identify the tension angle versus interlink angle require the OPB stiffness data from the 3-link analyses. A convergence study was conducted to determine the minimum number of links for a multi-link analysis. It was proven that 10 links were sufficient for the multi-link analysis. The tension angle versus interlink angle relations are presented based on multi-link analyses with 10 links. It was found that the subsequent results varied significantly according to the 3-link analysis techniques.

A Study on The consumption Pattern of Urban Salary and Wage Earners' Household in Korean from 1970 to 1978 (전도시 근로자 가계의 소비구조 변동에 관한 연구 -1970년부터 1978년까지를 중심으로-)

  • 김순옥
    • Journal of the Korean Home Economics Association
    • /
    • v.18 no.4
    • /
    • pp.65-73
    • /
    • 1980
  • The purpose of this study is ti find out a desirable way to stability and improvement of household economy by studying the changes of consumption level and consumption pattern of urban salary and wage earners' households during the years from 1970 to 1978. For this study, "Annual Report on the Family Income and Expenditure survey" (Published by the Bureau of Statistics, Economics Planning Board) has been used as basic material, and the methods of analysis used here are the time series analysis. We have gained the results as follows: 1) From 1970 to 198, the total income level increased at the rate of 416.2% in nominal price, but only 74.4% in reql price, while the total expenditure level showed 338.5% increase in nominal price, but its real increased proved only 418.2% in consideration of inflation. APC decreased from 95.1%(in 1970) to 80.7%(in 1978). 2) As for the expenditure pattern for the above mentioned nine years, the rate of food expenditure increased until 1975 under the price influence, but it trended to decease there after on . The rate of housing expenditure showed a gradual increase while that of fuel and light expenditure was on the decrease. The rate of clothing expenditure had been on the decease until 1974 but it began to increase gradually thereafter on. The trend of miscellaneous expenditures was irregularly up and down, educational expences being the first rank among them, Non-living expenditure had been constant until 1974 but it decreased a little after that. From the results it was found that the consumption level of the salary and wage earners' household in all cities from 1970 to 1978 was not practically improved because of rise in prices, nor was the Engel's coefficient and the rate of miscellaneous expenditure changed distinctively. However, as the successive decrease of APC suggests the possibility of economic development, we must try to put stress on economy in consumption and on encouraging. This will help run our household economy in safety and stability.

  • PDF

Size Effect of Specimen and Aggregate on Fracture Characteristics of Cemented Sand (경화 모래의 파괴 특성에 대한 시료 및 입자의 크기 영향)

  • Kim Tae-Hoon;Lee Kang-Il;Im Eun-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.45-55
    • /
    • 2004
  • In the past it has been often observed that the shear stresses at failure are much smaller than the shear strength obtained from traditional laboratory tests and conventional analysis technique is inadequate in stiff soil, such as cemented sand. Many researchers have brought attention to the fact that the presence of flaws i.e. fissures, cracks, joints have a great effect on the strength and overall stress-strain behavior of such materials. They have thought that fracture mechanics may appropriately be adopted as a good tool for analysis of these materials. However, the use of fracture mechanics concept especially for cemented sands is faced with difficulties in obtaining relevant parameters, because fracture parameters and predictions are highly dependent on the material constituents and the size of specimens as well as the size of particles. This paper addresses the effects of sizes which include specimen and aggregate on fracture properties of cemented sand. The results of laboratory tests show that the sizes of specimens and particle have a great effect on the fracture properties such as nominal strength of cemented sand.

The flexural performance of laminated glass beams under elevated temperature

  • Huang, Xiaokun;Liu, Gang;Liu, Qiang;Bennison, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.603-612
    • /
    • 2014
  • A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from $25^{\circ}C$ to $80^{\circ}C$. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From $25^{\circ}C$ to $80^{\circ}C$ the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to $50^{\circ}C$. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as $80^{\circ}C$. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from $25^{\circ}C$ to $80^{\circ}C$.