• Title/Summary/Keyword: nominal machining time

Search Result 3, Processing Time 0.017 seconds

Estimation of Sculptured Surface NC Machining Time (자유곡면 NC 절삭가공시간 예측)

  • 허은영;김보현;김동원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.254-261
    • /
    • 2003
  • In mold and die shops, NC machining process mainly affects the quality of the machined surface and the manufacturing time of molds and dies. The estimation of NC machining time is a prerequisite to measure the machining productivity and to generate a process schedule, which generally includes the process sequence and the completion time of each process. It is required to take into account dynamic characteristics in the estimation, such as the ac/deceleration of NC machine controllers. Intensive observations at start and end points of NC blocks show that a minimum feedrate, a key variable in a machining time model, has a close relation to a block distance, an angle between blocks, and a command feedrate. Thus, this study addresses regression models for the minimum feedrate estimation on short and long NC blocks considering these parameters. Furthermore, machining time estimation models by the four types of feedrate behaviors are suggested based on the estimated minimum feedrate. To show the validity of the proposed machining time model, the study compares the estimated with the actual machining time in the sculptured surface machining of several mold dies.

Machining time estimation of sculptured surfaces using NC block distributions (NC 블록 분포를 이용한 자유곡면의 가공시간 예측)

  • Heo, Eun-Young;Park, Seon-Young;Kim, Bo-Hyun;Kim, Dong-Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.48-51
    • /
    • 2004
  • The estimation of NC machining time is of significance since it provides shop floor engineers with information for the determination of the productivity of the floor as well as process schedules. The NC machining time commonly depends on NC programs since they have various important information such as tool positions, feed rates, and other miscellaneous functions. Thus, nominal NC machining time can be easily acquired based on the programs. Actual machining time, however, cannot be simply obtained because of the dynamic characteristics of a NC machine controller such as acceleration and deceleration. Hence, this study presents a NC machine time estimation model for sculptured surfaces, considering the dynamic characteristics. The estimation model uses the distribution of NC blocks according to a factor influencing the machining time. Finally, machining time is estimated by a statistical machining time estimation model representing the relationship between the block distribution and the machining time. The parameters in the model are searched out by a genetic algorithm.

  • PDF

Parametric Shape Design and CNC Tool Path Generation of a Propeller Blade (프로펠러 블레이드의 형상설계 및 CNC 공구경로 생성)

  • 정종윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.46-59
    • /
    • 1998
  • This paper presents shape design, surface construction, and cutting path generation for the surface of marine ship propeller blades. A propeller blade should be designed to satisfy performance constraints that include operational speed which impacts rotations per minutes, stresses related to deliverable horst power, and the major length of the marine ship which impacts the blade size and shape characteristics. Primary decision variables that affect efficiency in the design of a marine ship propeller blade are the blade diameter and the expanded area ratio. The blade design resulting from these performance constraints typically consists of sculptured surfaces requiring four or five axis contoured machining. In this approach a standard blade geometry description consisting of blade sections with offset nominal points recorded in an offset table is used. From this table the composite Bezier surface geometry of the blade is created. The control vertices of the Hazier surface patches are determined using a chord length fitting procedure from tile offset table data. Cutter contact points and path intervals are calculated to minimize travel distance and production time while maintaining a cusp height within tolerance limits. Long path intervals typically generate short tool paths at the expense of increased however cusp height. Likewise, a minimal tool path results in a shorter production time. Cutting errors including gouging and under-cut, which are common errors in machining sculptured surfaces, are also identified for both convex and concave surfaces. Propeller blade geometry is conducive to gouging. The result is a minimal error free cutting path for machining propeller blades for marine ships.

  • PDF