• Title/Summary/Keyword: nominal curve

Search Result 62, Processing Time 0.025 seconds

EVALUATION ON THE FATIGUE STRENGTH OF SINGLE-SIDED WELDED JOINTS WITH CERAMIC BACKING MATERIAL

  • Kim Gwang-Seok;Kim Yu-Il;Jeon Yu-Cheol;Gang Jung-Gyu;Heo Ju-Ho;Lee Seong-Geun
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.255-257
    • /
    • 2004
  • This report presents S-N testing results of the butt and T-joint weldment which are produced by single sided welding with cenramic backing material. The specimen is designed in accordance with JISZ 3103 aid the test is peformed by the JSME S002. The nominal and hot spot stress based design S-N curves derived from fatigue tests are compared with the BS design curve. For butt and T-joint, it can be known that the double-sided butt welding process could be replaced by the single sided butt welding.

  • PDF

A study on the characteristics of operating limits of High-Pressure discharge lamps during Voltage Sag (Voltage Sag에 의한 고압 방전등의 운전한계 특성 연구)

  • Jeong, Sung-Won;Hwang, Keon-Ho;Lee, Hyun-Chul;Lee, Geun-Joon;Gim, Jae-Hyeon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.37-40
    • /
    • 2008
  • This paper presents the results of a simulation to analyze the effects of voltage sag on high-pressure discharge lamp(400[W]). In this paper, voltage sag is considered a reduction between 0 and 0.9[p.u] in nominal voltage magnitude, with duration between 0.01 and 90cycle. The simulation results depict the characteristics of the lamp about operating limits during voltage sag by the magnitude and duration of sag in CBEMA curve.

  • PDF

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Considering Stress Concentration at Weld Toe (응력집중을 고려한 십자형 필렛 용접재의 피로강도 평가)

  • Kim D. J.;Seck C. S.;Koo J. M.;Park J. S.;Seo J. W.;Goo B. C.
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.222-227
    • /
    • 2004
  • Under cyclic loading, the fatigue failures of welded joints occur at weld toes which induce stress concentration by weld shape. So we need to obtain the peak stress and the S-N curve to assess the fatigue strength of welded joints. However the measurement of peak stress is of high uncertainty and low reproducibility, so we use nominal stress instead in fatigue tests of welded joints. In this study, fatigue tests to obtain S-N curves and FE analyses to obtain stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curves to that based on peak stress using the hot-spot stress concept. From the analyses of the S-N curves obtained, we have concluded that there is a need to develop a new method to evaluate the fatigue life.

  • PDF

A Study on the Quantitative Method of Static Combat Effectiveness for Jet-Fighter Generation (정태적 전투효과도 분석기법을 사용한 전투기 세대 정량화 연구)

  • Lim, Sang-Min;Park, Jae-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.643-650
    • /
    • 2012
  • This paper presents quantitative method of static combat effectiveness to classify fighter aircraft generations. We have analyzed performance metrics of United States(US), United Kingdom(UK), Russia, France, Sweden' fighters to determine jet-fighter generation. Both nominal and continuous variables were defined and used to present current trend of combat effectiveness.

Fatigue Strength Assessment of TLP Tendon Porch Using API 2W Gr.50 Steel

  • Im, Sung-Woo;Seo, Young-Seok;Lee, Joo-Sung
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2007
  • This paper is concerned with the fatigue strength assessment of tendon porch found which is categorized as the special structural member in TLP. Large-scale tendon porch specimens have been designed and fabricated with API 2W Gr.50 steel recently produced by POSCO. Fatigue test has been carried out for three tendon porch specimens under various load level. Fatigue strength has been evaluated based on the nominal stress range and the results are compared with the fatigue design curve of DnV RP-C203. From the present experimental study, it has been found that the porch specimens satisfy the fatigue design rule although test was carried out under the positive stress ratio. It can be, therefore, said that the API 2W steel produced by POSCO possess sufficient fatigue strength.

Optimum Design of the CT Type Plate with Varing Thickness (CT형 변후보강재의 최적 설계)

  • 석창성;최용식
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.1
    • /
    • pp.5-13
    • /
    • 1991
  • Fail-safe design of machine elements or structural members is very aim of the whole mankind. Fracture occurs generally from cracks that exist originally or produced from flaws. The most important job we have to do is to make stopping or decreasing the crack growth rate. For fail-safe design variable thickness plates have been used as structural members in practical engineering services. In this paper, optimum design of CT type plate with varlng thickness is studied with the theoritical analysis. The theoritical analysis was based on the stress concentration and nominal stress analysis. From the study, the optimum design curve was determined for use of designing of such structures using the computer analysis program of optimum design.

  • PDF

Characterization of A Catalystic Gas Sensor for Measuring Heat Content of Natural Gas (천연가스의 열용량을 측정하기 위한 촉매가스센서의 특징)

  • Lee K. Y.;Maclay G. J.;Stetter J. R.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • A low power (below than 300 mW) catalytic bead combusible gas sensor is developed and utilized with a computer controlled sampling system for measuring heat content of natural gas. The heat content of gas is proportional to the change in the energy required to exposure to the sample of combustible gas. The heat content of natural gas samples ranging 36.30 - 39.88 $MJ/m^3$ is measured in the range of approximately $1\%$ error, which is comparable to its nominal heat content. Each gas represents a slightly different curve of sensitivity to sensor temperature. Thus all of the sensitivities are not equal to every temperature. In calibration process the choice of a optimum operating temperature is an important factor that influences the overall performance of the measurement system.

  • PDF

Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs

  • Heng, Junlin;Zheng, Kaifeng;Kaewunruen, Sakdirat;Zhu, Jin;Baniotopoulos, Charalampos
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.799-813
    • /
    • 2020
  • Fatigue cracks of rib-to-deck (RD) joints have been frequently observed in the orthotropic steel decks (OSD) using conventional U-ribs (CU). Thickened edge U-rib (TEU) is proposed to enhance the fatigue strength of RD joints, and its effectiveness has been proved through fatigue tests. In-depth full-scale tests are further carried out to investigate both the fatigue strength and fractography of RD joints. Based on the test result, the mean fatigue strength of TEU specimens is 21% and 17% higher than that of CU specimens in terms of nominal and hot spot stress, respectively. Meanwhile, the development of fatigue cracks has been measured using the strain gauges installed along the welded joint. It is found that such the crack remains almost in semi-elliptical shape during the initiation and propagation. For the further application of TEUs, the design curve under the specific survival rate is required for the RD joints using TEUs. Since the fatigue strength of welded joints is highly scattered, the design curves derived by using the limited test data only are not reliable enough to be used as the reference. On this ground, an experiment-numerical hybrid approach is employed. Basing on the fatigue test, a probabilistic assessment model has been established to predict the fatigue strength of RD joints. In the model, the randomness in material properties, initial flaws and local geometries has been taken into consideration. The multiple-site initiation and coalescence of fatigue cracks are also considered to improve the accuracy. Validation of the model has been rigorously conducted using the test data. By extending the validated model, large-scale databases of fatigue life could be generated in a short period. Through the regression analysis on the generated database, design curves of the RD joint have been derived under the 95% survival rate. As the result, FAT 85 and FAT 110 curves with the power index m of 2.89 are recommended in the fatigue evaluation on the RD joint using TEUs in terms of nominal stress and hot spot stress respectively. Meanwhile, FAT 70 and FAT 90 curves with m of 2.92 are suggested in the evaluation on the RD joint using CUs in terms of nominal stress and hot spot stress, respectively.

EVALUATION OF DYNAMIC TENSILE CHARACTERISTICS OF POLYPROPYLENE WITH TEMPERATURE VARIATION

  • Kim, J.S.;Huh, H.;Lee, K.W.;Ha, D.Y.;Yeo, T.J.;Park, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.571-577
    • /
    • 2006
  • This paper deals with dynamic tensile characteristics for the polypropylene used in an IP(Instrument Panel). The polypropylene is adopted in the dash board of a car, especially PAB(Passenger Air Bag) module. Its dynamic tensile characteristics are important because the PAB module undergoes high speed deformation during the airbag expansion. Since the operating temperature of a car varies from $-40^{\circ}C$ to $90^{\circ}C$ according to the specification, the dynamic tensile tests are performed at a low temperature($-30^{\circ}C$), the room temperature($21^{\circ}C$) and a high temperature($85^{\circ}C$). The tensile tests are carried out at strain rates of six intervals ranged from 0.001/sec to 100/sec in order to obtain the strain rate sensitivity. The flow stress decreases at the high temperature while the strain rate sensitivity increases. Tensile tests of polymers are rather tricky since polymer does not elongate uniformly right after the onset of yielding unlike the conventional steel. A new method is suggested to obtain the stress-strain curve accurately. A true stress-strain curve was estimated from modification of the nominal stress-strain curves obtained from the experiment. The modification was carried out with the help of an optimization scheme accompanied with finite element analysis of the tensile test with a special specimen. The optimization method provided excellent true stress-strain curves by enforcing the load response coincident with the experimental result. The material properties obtained from this paper will be useful to simulate the airbag expansion at the normal and harsh operating conditions.