• Title/Summary/Keyword: noise-robust speech recognition

Search Result 134, Processing Time 0.024 seconds

An Improvement of Stochastic Feature Extraction for Robust Speech Recognition (강인한 음성인식을 위한 통계적 특징벡터 추출방법의 개선)

  • 김회린;고진석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.180-186
    • /
    • 2004
  • The presence of noise in speech signals degrades the performance of recognition systems in which there are mismatches between the training and test environments. To make a speech recognizer robust, it is necessary to compensate these mismatches. In this paper, we studied about an improvement of stochastic feature extraction based on band-SNR for robust speech recognition. At first, we proposed a modified version of the multi-band spectral subtraction (MSS) method which adjusts the subtraction level of noise spectrum according to band-SNR. In the proposed method referred as M-MSS, a noise normalization factor was newly introduced to finely control the over-estimation factor depending on the band-SNR. Also, we modified the architecture of the stochastic feature extraction (SFE) method. We could get a better performance when the spectral subtraction was applied in the power spectrum domain than in the mel-scale domain. This method is denoted as M-SFE. Last, we applied the M-MSS method to the modified stochastic feature extraction structure, which is denoted as the MMSS-MSFE method. The proposed methods were evaluated on isolated word recognition under various noise environments. The average error rates of the M-MSS, M-SFE, and MMSS-MSFE methods over the ordinary spectral subtraction (SS) method were reduced by 18.6%, 15.1%, and 33.9%, respectively. From these results, we can conclude that the proposed methods provide good candidates for robust feature extraction in the noisy speech recognition.

Noise Robust Speech Recognition Based on Parallel Model Combination Adaptation Using Frequency-Variant (주파수 변이를 이용한 Parallel Model Combination 모델 적응에 기반한 잡음에 강한 음성인식)

  • Choi, Sook-Nam;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.252-261
    • /
    • 2013
  • The common speech recognition system displays higher recognition performance in a quiet environment, while its performance declines sharply in a real environment where there are noises. To implement a speech recognizer that is robust in different speech settings, this study suggests the method of Parallel Model Combination adaptation using frequency-variant based on environment-awareness (FV-PMC), which uses variants in frequency; acquires the environmental data for speech recognition; applies it to upgrading the speech recognition model; and promotes its performance enhancement. This FV-PMC performs the speech recognition with the recognition model which is generated as followings: i) calculating the average frequency variant in advance among the readily-classified noise groups and setting it as a threshold value; ii) recalculating the frequency variant among noise groups when speech with unknown noises are input; iii) regarding the speech higher than the threshold value of the relevant group as the speech including the noise of its group; and iv) using the speech that includes this noise group. When noises were classified with the proposed FV-PMC, the average accuracy of classification was 56%, and the results from the speech recognition experiments showed the average recognition rate of Set A was 79.05%, the rate of Set B 79.43%m, and the rate of Set C 83.37% respectively. The grand mean of recognition rate was 80.62%, which demonstrates 5.69% more improved effects than the recognition rate of 74.93% of the existing Parallel Model Combination with a clear model, meaning that the proposed method is effective.

A Study on Variation and Determination of Gaussian function Using SNR Criteria Function for Robust Speech Recognition (잡음에 강한 음성 인식에서 SNR 기준 함수를 사용한 가우시안 함수 변형 및 결정에 관한 연구)

  • 전선도;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.112-117
    • /
    • 1999
  • In case of spectral subtraction for noise robust speech recognition system, this method often makes loss of speech signal. In this study, we propose a method that variation and determination of Gaussian function at semi-continuous HMM(Hidden Markov Model) is made on the basis of SNR criteria function, in which SNR means signal to noise ratio between estimation noise and subtracted signal per frame. For proving effectiveness of this method, we show the estimation error to be related with the magnitude of estimated noise through signal waveform. For this reason, Gaussian function is varied and determined by SNR. When we test recognition rate by computer simulation under the noise environment of driving car over the speed of 80㎞/h, the proposed Gaussian decision method by SNR turns out to get more improved recognition rate compared with the frequency subtracted and non-subtracted cases.

  • PDF

CASA-based Front-end Using Two-channel Speech for the Performance Improvement of Speech Recognition in Noisy Environments (잡음환경에서의 음성인식 성능 향상을 위한 이중채널 음성의 CASA 기반 전처리 방법)

  • Park, Ji-Hun;Yoon, Jae-Sam;Kim, Hong-Kook
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.289-290
    • /
    • 2007
  • In order to improve the performance of a speech recognition system in the presence of noise, we propose a noise robust front-end using two-channel speech signals by separating speech from noise based on the computational auditory scene analysis (CASA). The main cues for the separation are interaural time difference (ITD) and interaural level difference (ILD) between two-channel signal. As a result, we can extract 39 cepstral coefficients are extracted from separated speech components. It is shown from speech recognition experiments that proposed front-end has outperforms the ETSI front-end with single-channel speech.

  • PDF

Creation and Assessment of Korean Speech and Noise DB in Car Environments (자동차 환경에서의 노이즈 DB 및 한국어 음성 DB 구축)

  • Lee Kwang-Hyun;Kim Bong-Wan;Lee Yong-Ju
    • MALSORI
    • /
    • no.48
    • /
    • pp.141-153
    • /
    • 2003
  • Researches into robust recognition in noise environments, especially in car environments, are being carried out actively in speech community. In this paper we will report on three types of corpora that SiTEC (Speech Information TEchnology & industry promotion Center) has created for research into speech recognition in car noise environments. The first is the recordings of 900 Korean native speakers, distributed according to gender, age, and region, who uttered application words in car environments. The second is the collections of mixed noise in 3 car types by model while setting up various noise patterns which can be obtained with the car engine on or off, at different driving speed, and in different road conditions with windows open or closed. The third is the recordings of simulated speech by HATS (Head and Torso Simulator) in car environments with the internal and external noise factors added. These three types of recordings were all made through synchronized 8 channel microphones that are fixed in a car. The creation and applications of these corpora will be reported on in detail.

  • PDF

Performance Comparison between the PMC and VTS Method for the Isolated Speech Recognition in Car Noise Environments (자동차 잡음환경 고립단어 음성인식에서의 VTS와 PMC의 성능비교)

  • Chung, Yong-Joo;Lee, Seung-Wook
    • Speech Sciences
    • /
    • v.10 no.3
    • /
    • pp.251-261
    • /
    • 2003
  • There has been many research efforts to overcome the problems of speech recognition in noisy conditions. Among the noise-robust speech recognition methods, model-based adaptation approaches have been shown quite effective. Particularly, the PMC (parallel model combination) method is very popular and has been shown to give considerably improved recognition results compared with the conventional methods. In this paper, we experimented with the VTS (vector Taylor series) algorithm which is also based on the model parameter transformation but has not attracted much interests of the researchers in this area. To verify the effectiveness of it, we employed the algorithm in the continuous density HMM (Hidden Markov Model). We compared the performance of the VTS algorithm with the PMC method and could see that the it gave better results than the PMC method.

  • PDF

Feature Vector Processing for Speech Emotion Recognition in Noisy Environments (잡음 환경에서의 음성 감정 인식을 위한 특징 벡터 처리)

  • Park, Jeong-Sik;Oh, Yung-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • This paper proposes an efficient feature vector processing technique to guard the Speech Emotion Recognition (SER) system against a variety of noises. In the proposed approach, emotional feature vectors are extracted from speech processed by comb filtering. Then, these extracts are used in a robust model construction based on feature vector classification. We modify conventional comb filtering by using speech presence probability to minimize drawbacks due to incorrect pitch estimation under background noise conditions. The modified comb filtering can correctly enhance the harmonics, which is an important factor used in SER. Feature vector classification technique categorizes feature vectors into either discriminative vectors or non-discriminative vectors based on a log-likelihood criterion. This method can successfully select the discriminative vectors while preserving correct emotional characteristics. Thus, robust emotion models can be constructed by only using such discriminative vectors. On SER experiment using an emotional speech corpus contaminated by various noises, our approach exhibited superior performance to the baseline system.

  • PDF

Frame Reliability Weighting for Robust Speech Recognition (프레임 신뢰도 가중에 의한 강인한 음성인식)

  • 조훈영;김락용;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.323-329
    • /
    • 2002
  • This paper proposes a frame reliability weighting method to compensate for a time-selective noise that occurs at random positions of speech signal contaminating certain parts of the speech signal. Speech frames have different degrees of reliability and the reliability is proportional to SNR (signal-to noise ratio). While it is feasible to estimate frame Sl? by using the noise information from non-speech interval under a stationary noisy situation, it is difficult to obtain noise spectrum for a time-selective noise. Therefore, we used statistical models of clean speech for the estimation of the frame reliability. The proposed MFR (model-based frame reliability) approximates frame SNR values using filterbank energy vectors that are obtained by the inverse transformation of input MFCC (mal-frequency cepstral coefficient) vectors and mean vectors of a reference model. Experiments on various burnt noises revealed that the proposed method could represent the frame reliability effectively. We could improve the recognition performance by using MFR values as weighting factors at the likelihood calculation step.

A Land and Maritime Unified Tourism Information Guide System Based on Robust Speech Recognition in Ship Noise Environments (선박 잡음 환경에서의 강건한 음성 인식 기반 육해상 통합 관광 정보 안내 시스템)

  • Jeon, Kwang Myung;Lee, Jang Won;Park, Ji Hun;Lee, Seong Ro;Lee, Yeonwoo;Maeng, Se Young;Kim, Hong Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.189-195
    • /
    • 2013
  • In this paper, a land and maritime unified tourism information guide system is proposed which employs robust speech recognition in ship noise environments. Most of conventional front-ends for speech recognition have used a Wiener filter to compensate for stationary noise such as car or babble noises. However, such the conventional front-ends have limitation in reducing non-stationary noise that are occurred inside the ship on voyage. To overcome such a limitation, the proposed system incorporates nonlinear multi-band spectral subtraction to provide highly accurate tourism route recognition. It is shown from the experiment that compared to a conventional system the proposed system achieves relative improvement of a tourism route recognition rate by 5.54% under a noise condition of 10 dB signal-to-noise ratio (SNR).

Robust Histogram Equalization Using Compensated Probability Distribution

  • Kim, Sung-Tak;Kim, Hoi-Rin
    • MALSORI
    • /
    • v.55
    • /
    • pp.131-142
    • /
    • 2005
  • A mismatch between the training and the test conditions often causes a drastic decrease in the performance of the speech recognition systems. In this paper, non-linear transformation techniques based on histogram equalization in the acoustic feature space are studied for reducing the mismatched condition. The purpose of histogram equalization(HEQ) is to convert the probability distribution of test speech into the probability distribution of training speech. While conventional histogram equalization methods consider only the probability distribution of a test speech, for noise-corrupted test speech, its probability distribution is also distorted. The transformation function obtained by this distorted probability distribution maybe bring about miss-transformation of feature vectors, and this causes the performance of histogram equalization to decrease. Therefore, this paper proposes a new method of calculating noise-removed probability distribution by using assumption that the CDF of noisy speech feature vectors consists of component of speech feature vectors and component of noise feature vectors, and this compensated probability distribution is used in HEQ process. In the AURORA-2 framework, the proposed method reduced the error rate by over $44\%$ in clean training condition compared to the baseline system. For multi training condition, the proposed methods are also better than the baseline system.

  • PDF