• Title/Summary/Keyword: noise maps

Search Result 133, Processing Time 0.021 seconds

Influence of Tip Mass on Stability of a Rotating Cantilever Pipe Conveying Fluid (유체유동 회전 외팔 파이프의 안정성에 미치는 끝단질량의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.976-982
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and tip mass. The equation of motion is derived by using the Lagrange's equation. The system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of a rotating angular velocity, mass ratio, the velocity of fluid flow and tip mass on the stability of a cantilever pipe by the numerical method are studied. The critical flow velocity for flutter is proportional to the angular velocity and tip mass of the cantilever pipe. Also, the critical flow velocity and stability maps of the pipe system are obtained by changing the mass ratios.

Effects of Attached Mass on Stability of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성에 미치는 부가질량의 영향)

  • Son, In-Soo;Cho, Jeong-Rae;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.1002-1009
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached mass on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached mass and crack severity.

Eigenvalue Branches and Flutter Modes of Pipes with a Tip Mass Conveying Fluid (끝단질량을 갖는 송수관의 고유치 분기와 플러터 모드)

  • 류봉조;류시웅;빈산길언;임경빈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.665-669
    • /
    • 2003
  • The paper deals with the relationship between the eigenvalue branches and the corresponding flutter modes of cantilevered pipes with a tip mass conveying fluid. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The order of branches and unstable modes associated with flutter are defined in the stability maps of mass ratios of the pipe and the critical flow velocity. As a result, the relationship between the flutter related to the eigenvalue branches and the flutter modes are investigated thoroughly.

  • PDF

Chaotic response of a double pendulum subjected to follower force (종동력을 받는 진동계의 케이오틱 거동 연구)

  • 이재영;장안배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.295-300
    • /
    • 1996
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower force are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant and periodic follower forces are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, phase portraits, and Poincare maps, etc.. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, and viscous damping, etc. is analysed. The strange attractors in Poincare map have the self-similar fractal geometry. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Ryu, B.J.;Jung, S.H.;Shin, G.B.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.465-468
    • /
    • 2005
  • The paper deals with the influences of external damping and tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

  • PDF

An Image Contrast Enhancement Method based on Pyramid Fusion Using BBWE and MHMD (BBWE와 MHMD를 이용한 피라미드 융합 기반의 영상의 대조 개선 기법)

  • Lee, Dong-Yul;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1250-1260
    • /
    • 2013
  • The contrast enhancement techniques based on Laplacian pyramid image fusion have a benefit that they can faithfully describe the image information because they combine the multiple resource images by selecting the desired pixel in each image. However, they also have some problem that the output image may contain noise, because the methods evaluate the visual information on the basis of each pixel. In this paper, an improved contrast enhancement method, which effectively suppresses the noise, using image fusion is proposed. The proposed method combines the resource images by making Laplacian pyramids generated from weight maps, which are produced by measuring the difference between the block-based local well exposedness and local homogeneity for each resource image. We showed the proposed method could produce less noisy images compared to the conventional techniques in the test for various images.

Acoustical characteristics of the Jing ; An experimental observation using planar acoustic holography

  • Kwon, Hyu-Sang;Kim, Yang-Hann;Minhong Rim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.3-13
    • /
    • 1997
  • The Jing is a traditional Korean percussion instrument which plays a major role in Korean folk music. The distingishing feature of this instrument is its unique, long lasting low tone timbre. In this paper, we investigated the vibro-acoustic characteristics of the Jing. Our attention was focused mainly on findings out the physical variables that determine its unique sound. By understanding the way in which the Jing is manufactured, we were able to realize that the unique manufacturing and especially the tuning process by expert craftsman is responsible for the peculiar timbre the Jing produces. The experimental methods implemented to analyzer the Jing were planar acoustic holography and direct measurements by accelerometers. The results from the holographic method and the direct measurements were in good agreement. It turned out that unlike most percussion instruments which have inharmonic partials, the Jing has harmonic partials which are responsible for its unique low-tone timbre. From the holographic representations of the modes, it is clear that the antinodes are located in the center of the Jing which is coincident with the typical striking location. In addition, intensity maps were constructed so that the specific acoustic energy flow can be visualized. It was also interesting to see the the circulation of energy intensity which corresponds to the rotating mode of the Jing.

  • PDF

Depth Map Denoising Based on the Common Distance Transform (공동 거리 변환 기반의 깊이맵 잡음 제거)

  • Kim, Sung-Yeol;Kim, Man-Bae;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.565-571
    • /
    • 2012
  • During depth data acquisition and transmission, the quality of depth maps is usually degraded by physical noise and coding error. In this paper, a new joint bilateral filter based on the common distance transform is presented to enhance the low-quality depth map. The proposed method determines the amount of exploitable color data according to distance transform values of depth and color pixels. Consequently, the proposed filter minimizes noise in the depth map while suppressing visual artifacts of joint bilateral filtering. Experimental results show that our method outperforms other conventional methods in terms of noise reduction and visual artifact suppression.

Nonuniform Gain Correction Based on the Filtered Gain Map in Radiography Image Detectors (방사선 영상 디텍터에서 필터링된 이득지도를 사용한 불균일 이득 잡음의 보정)

  • Kim, Dong Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.97-105
    • /
    • 2016
  • Radiography image detector produces digital images by collecting the charges from the incident x-ray photons and converting it to the voltage signals and then the digital signals. The fixed-pattern noise from the nonuinform amplifier gains in the employed multiple readout circuits. In order to correct the nonuniform gains, a gain-correction technique which is based on the gain map is conventionally used. Since the photon noise remains in the designed gain map, the noise contaminates the gain-corrected images. In this paper, experimental observations are conducted for filtering the remained noise in the gain map, and a filter optimization algorithm is proposed to efficiently remove the noise. For acquired x-ray images from detectors, the filtered gain maps are evaluated and it is shown that optimization algorithm can improve the filtering performance even for relatively strong fixed-pattern noises, which cannot be removed by a simple filter.

Depth Interpolation Method using Random Walk Probability Model (랜덤워크 확률 모델을 이용한 깊이 영상 보간 방법)

  • Lee, Gyo-Yoon;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.738-743
    • /
    • 2011
  • For the high quality 3-D broadcasting, depth maps are important data. Although commercially available depth cameras capture high-accuracy depth maps in real time, their resolutions are much smaller than those of the corresponding color images due to technical limitations. In this paper, we propose the depth map up-sampling method using a high-resolution color image and a low-resolution depth map. We define a random walk probability model in an operation unit which has nearest seed pixels. The proposed method is appropriate to match boundaries between the color image and the depth map. Experimental results show that our method enhances the depth map resolution successfully.