• Title/Summary/Keyword: noise in ship

Search Result 451, Processing Time 0.032 seconds

A Study on Sound Radiation from Isofropic Plates Stiffened by Symmetrical Reinforced Beams (대칭형 보에 의해 보강된 등방성 평판의 음향방사에 관한 연구)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • The detemination of sound pressure radiated from peoriodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. A space harmonic series representation of the spatial variables is used in conjunction with the Fourier transform to find the sound pressure in terms of harmonic coefficients. From this theoretical model. the sound pressure levels on axis in a semi-infinite fluid (water) bounded by the plate with the variation in the locations of an external time harmonic point force on the plate can be calculated efficiently using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

Development of Algorithm for Measuring Oscillating Angles and Periods of Ships in a Seaway (파랑중 실선의 동요각 및 동요 주기 추정 알고리듬 개발)

  • Choi, Kwang-Sik;Won, Moon-Cheol;Ryu, Sang-Hyun;Lew, Jae-Moon;Ji, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.141-149
    • /
    • 2010
  • It is essential to find oscillating angles and periods in a seaway when designing and manufacturing stabilizers. It is difficult to find oscillating angles and periods in high speed turning and they vary with ship speed and wave heading angles, therefore, proper algorithm to measure oscillating periods in a seaway. In the present study, three kinds of algorithms are developed to measure oscillating angles periods in a seaway. Dual axis tilt sensor of low price is used to measure oscillating angles, and the effect of lateral accelerations on tilt sensor have been reduced by the fusion algorithm using the gyro sensor signals. Analog and digital filters are applied to minimize the noise of the signals. Three kinds of algorithms, zero crossing, peak to peak and moving zero crossing algorithm, are developed to measure oscillating periods in a seaway. It is found that the moving zero algorithm showed the best results in the sea trials.

A Study on Signal Processing Method for Welding Current in Automatic Weld Seam Tracking System (용접선 자동추적시 용접전류 신호처리 기법에 관한 연구)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.102-110
    • /
    • 1998
  • The horizontal fillet welding is prevalently used in heavy and ship building industries to fabricate the large scale structures. A deep understanding of the horizontal fillet welding process is restricted, because the phenomena occurring in welding are very complex and highly non-linear characteristics. To achieve the satisfactory weld bead geometry in robot welding system, the seam tracking algorithm should be reliable. The number of seam tracker was developed for arc welding automation by now. Among these seam tracker, the arc sensor is prevalently used in industrial robot welding system because of its low cost and flexibility. However, the accuracy of arc sensor would be decreased due to the electrical noise and metal transfer. In this study, the signal processing algorithm based on the neural network was implemented to enhance the reliability of measured welding current signals. Moreover, the seam tracking algorithm in conjunction with the signal processing algorithm was implemented to trace the center of weld line. It was revealed that the neural network could be effectively used to predict the welding current signal at the end of weaving.

  • PDF

Key Layouts of the 5,000 ton' New Scientific Research Vessel of KIOST (5,000톤급 대형 해양과학연구선 설계 특성)

  • Park, Cheong Kee
    • Ocean and Polar Research
    • /
    • v.37 no.3
    • /
    • pp.235-247
    • /
    • 2015
  • The main purpose of procuring the oceanographic research vessel with state-of-the-art technology is to provide a floating laboratory to conduct field work on the global oceans. The vessel should be properly utilized to locate and evaluate unexplored natural resources as well as to contribute international efforts to better understand and manage global environmental issues. Top priorities in the vessel design are high safety standards, noise and vibration control efficiency, and effective application of research equipment. For the accomplishment of all activities, the vessel length over all should be extended ~100 m with a gross tonnage of ~5,900 ton. In particular, the dynamic positioning system II will essentially operate at sea state 6. The high efficiency emissions reduction system will also be adopted in preparation for entry into force of 3rd exhaust emission control (Tier III). About 130 navigational and scientific instruments will be installed. The final design and model test of the new research vessel were reviewed and completed, respectively, in 2014. Currently, the ship is being built on schedule and expected to be delivered in December 2015. Within the near future, the new vessel will assume the role of carrying out multidisciplinary oceanographic researches of the highest standards in a technologically advanced and environment friendly manner.

An Experimental Examination on Autonomous Recovery Algorithm of Piping System (배관체계 자율형 사고 대응 알고리즘에 대한 실험적 고찰)

  • Dae Won Yang;Byungchang Jung;Seong Rok Kim;Chaemin Lee;Yun-Ho Shin
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.8-14
    • /
    • 2023
  • In various industrial sites, piping systems play an essential role in stable fluid supply and pressure maintenance. However, these systems are constantly exposed to risks of earthquakes, explosions, fires, and leaks, which can result in casualties or serious economic losses. With rapid advancements in the industry, different-sized piping systems have been launched; however, there are not enough maintenance personnel for troubleshooting and responding to situations where damages occur to piping systems. This increases the need for introducing autonomous damage management systems. In this study, a lab-based piping system was designed and manufactured by referring to the piping system of a naval ship to analyze the effectiveness of autonomous damage management systems. By using this testbed, a representative algorithm, the hydraulic resistance control algorithm, was realized and examinedIn addition, the difference between the averaged pressure and normalized pressure was introduced to improve the performance of the existing algorithm, which faces some limitations with regard to sensor noise and back pressure from the rupture-simulated pipeline part.

Propeller Induced Pressure on Bottom Surface of Stern -A Method of Seperation from the Measured Pressure with Pressure Transducer attached on Hull Surface. (선미선저(船尾船底)에 미치는 추진기(推進器) 유기압력(誘起壓力) -선체표면(船體表面)에 붙인 압력변환기(壓力變換器)로 계측(計測)되는 압력(壓力)으로부터의 한 분리방법(分離方法)-)

  • Kyu-Jong,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1970
  • The propeller induced pressure fluctuation around a ship's stern is one of the interesting problems from viewpoints of the noise and vibration. Most of the experimental works on the subject employ pressure transducer attached on hull surface near the propeller. In the technique, the measured pressure includes the hydrodynamic pressure transducer attached, if they exit. Hence, the separation of the additional pressure due to vibration from the measured pressure is essential for the determination of true values of the propeller induced pressure. In this paper, to contribute to the separation method, the author investigated the additional hydrodynamic pressure as below, based on the numerical calculation. (1) Hydrodynamic pressure on the body surface of two dimensional cylinders of some mathematical sections such as ellipse, rectangle, Lewis form of hypotrocoidal charactor and curvilinear-element section with chines oscillating vertically at high frequency in a free surface. (2) Hydrodynamic pressure on the surface of the shell plate in local vibration in an ideal fluid.

  • PDF

Advanced Rake Receiver for Multiple Access M-ary Modulation UWB System in the IEEE Multipath Channel (IEEE 다중경로 채널에서 다중접속 M진 변조 초광대역 시스템을 위한 개선된 Rake 수신기)

  • An, Jinyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.12-19
    • /
    • 2014
  • In this paper, an advanced UWB (ultra wideband) Rake receiving technique based on the statistical distribution model is studied in the M-ary TH-PPM system with multiple access interference (MAI). In order to improve the performance of the Rake receiver, the stochastic model, which can flexibly express the behavior of MAI-plus-noise, is required and the Laplace distribution and the generalized normal Laplace (GNL) model applied by the curtosis matching method are considered. The performance of Rake receiver based on each probability distribution is evaluated in the IEEE multipath fading channel and compared to that of the conventional Rake receiver. The suggested approach shows a superior BER performance than that of conventional Rake receiver.

The Bearing Estimation of Narrowband Acoustic Signals Using DIFAR Beamforming Algorithm (DIFAR 빔형성 알고리듬을 이용한 협대역 음향신호의 방향성 추정)

  • 장덕홍;박홍배;정문섭;김인수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.169-184
    • /
    • 2002
  • In order to extract bearing information from the directional sensors of DIFAR(directional frequency analysis and recording) that is a kind of passive sonobuoy, the cardioid beamforming algorithm applicable to DIFAR system was studied in the frequency domain. the algorithm uses narrow-band signals propagated though the media from the acoustic sources such as ship machineries. The proposed algorithm is expected to give signal to noise ratio of 6dB when it uses the maximum response axis(MRA) among the Cardioid beams. The estimated bearings agree very well with those from GPS data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1~$6.7^{\circ}$ and 13.3~$43.6^{\circ}$, respectively. Estimation errors are caused by SMR degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Invader Detection System Using the Morphological Filtering and Difference Images Based on the Max-Valued Edge Detection Algorithm

  • Lee, Jae-Hyun;Kim, Sung-Shin;Kim, Jung-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.645-661
    • /
    • 2012
  • Recently, pirates are infesting on the sea and they have been hijacking the several vessels for example Samho Dream and Samho Jewelry of Korea. One of the items to reduce the risk is to adopt the invader detection system. If the pirates break in to the ship, the detection system can monitor the pirates and then call the security alarm. The crew can gain time to hide to the safe room and the report can be automatically sent to the control room to cope with the situation. For the invader detection, an unmanned observation system was proposed using the image detection algorithm that extracts the invader image from the recording image. To detect the motion area, the difference value was calculated between the current image and the prior image of the invader, and the 'AND' operator was used in calculated image and edge line. The image noise was reduced based on the morphology operation and then the image was transformed into morphological information. Finally, a neural network model was applied to recognize the invader. In the experimental results, it was confirmed that the proposed approach can improve the performance of the recognition in the invader monitoring system.

A Study on the Fatigue Strength of Propeller Blades (프로펠러 날개의 피로강도에 관한 연구)

  • Nho, In-Sik;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.539-543
    • /
    • 2011
  • Recently, to reduce the noise and vibration levels of ships, high skewed marine propellers with thinner thickness are adopted widely, however, such propeller design trend causes to reduce the strength of blades. Propeller blades are rotating continuously in irregular wake field of ships. So, it is necessary to examine the strength of them precisely including from a viewpoint of fatigue strength. In present paper, the fatigue strength of propeller blades was investigated. Firstly, fatigue tests for Al Bronze, the representative propeller material, were carried out. The S-N curve was obtained for the assessment of the fatigue crack initiation life. And the material properties C, m for the fatigue crack propagation analysis based on the Paris' equation were derived. For the 2nd stage, the structural responses of propeller blades in irregular ship wake field was carried out using the finite element analysis code. And the fatigue strength of propeller blades were considered based on the calculated stress levels and material characteristics for fatigue strength.