• 제목/요약/키워드: noise in ship

검색결과 451건 처리시간 0.044초

4,500 TEU 컨테이너 운반선의 소음 제어 (Noise Control for 4,500 TED Container Carrier)

  • 김동해;임도형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1313-1316
    • /
    • 2001
  • Generally, container carrier has larger engine than other commercial vessels and the engine casing is located in accommodation space. Therefore, the noise levels of cabins and engine room could be exceeded the specified noise limits and might be an annoyance to crews, and which can result in poor ship quality. Main subject of this study is to predict noise levels of the 4,500 TED container carrier by statistical energy analysis method in order to comply with contracted noise limits and to compare with the measured values. Additionally, through the contribution analysis of noise sources to each cabins, and appropriate countermeasures are proposed and the reduction effect of each noise control measure is studied by the analysis method. This study will contribute to reduce the noise levels of similar vessel.

  • PDF

위상차를 갖는 다중 가진 시 구조물의 방사효율 특성 해석 (Analysis of the Acoustic Radiation Efficiency on Multi-excitation System with Different Phase)

  • 강명환;이종주;한승진;배수룡;정우진
    • 한국소음진동공학회논문집
    • /
    • 제24권12호
    • /
    • pp.992-998
    • /
    • 2014
  • Acoustic radiation efficiency is one of the important factors in the prediction of underwater radiated noise of ships. A ship has much equipment to operate successful mission in a ship. Most of equipment is running simultaneously as multi-excitation and becomes the source of underwater radiated noise. In many cases of multi-excitation, phase difference between multi-excitation is not considered. Because vibration response under multi-excitation is the vector sum of each single excitation, acoustic radiation efficiency based on surface velocity field can be affected by phase of excitation. In this study, acoustic radiation efficiency of a plate on air and a stiffened cylindrical model in water under multi-excitation with phase difference is investigated.

기관소음의 수중전파에 관한 연구 (The Underwater Propagation of the Noise of Ship's Engine)

  • 박중희
    • 수산해양기술연구
    • /
    • 제16권2호
    • /
    • pp.69-76
    • /
    • 1980
  • This paper describes the measurement of the underwater noises produced by the engine vibration around the engine room of stern trawler MIS Sae-Ba-Da(2275GT, 3,600 PS) and pole kner M/S Kwan-Ak-San (243 GT, 1000 PS) while the ship is stopping. The underwater noise pressure level was measured with the underwater level meter of which measuring range is 100 to 200 dB(re bLPa). A and B denotes the maximum pressure level measured at right beneath the bottom of the engine room, while the main engine of the Sae-Ba-Da revoluted at 750 and 500 rpm, respectively. C denotes that of the main engine of the Kwan-Ak-San revoluted at 350 rpm, and D that of the generator of the Sae-Ba-Da revoluted at 720 rpm. Thus A, B, C and D were set for the standard sound source for the experiment. The results obtained are as follows: 1. The noise Pressure level at A, B, C and D were 170.5,165,153 and 158dB, respectively. 2. When the check points distanted vertically 1, 10, 20, 30, 40, 50m from the sound source, the underwater noise presure levels were 170.5, 155, 148, 144 and 138 dB and the directional angle was 116\ulcorner in case of A. 3. The sound level attenuated at the rate of 20dB per 10" meters of the horizontal distance from the sound sources. 4. The frequency distribution of the noise was 100Hz to 10KHz and predominant frequency was 700 to 800Hzminant frequency was 700 to 800Hz

  • PDF

선박 Diesel Generator의 배기 소음 특성, 방음 대책 및 실선 적용 사례 (An Example of Noise Control Measure for Exhaust Noise of Ship Diesel Generator)

  • 이도경;최수현;김노성;정성진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.862-867
    • /
    • 2000
  • The auxiliary engine exhaust noise in ships are directly transmitted to bridge wing with the only distance attenuation. It is not so practical that no special treatment can be applied between exhaust pipe and bridge wing in order to reduce the transmission of the exhaust noise. In general, a silencer is fitted to reduce the exhaust noise and also noise of bridge wing. The silencer should be properly designed under the consideration of the frequency component of the exhaust noise and the required insertion loss. In this paper, the frequency component of exhaust noise of various engines are compared and a design and a design and installation of silencer to reduce low frequency is introduced.

  • PDF

함정탑재 펌프류 장비의 공기음/고체음 저감 사례 연구 (Case study on the reduction of airborne and structure-borne noise of a shipboard pump)

  • 김상렬;김현실;김봉기;김재승;강현주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.411-415
    • /
    • 2007
  • The reduction of airborne and structure-borne noise of a shipboard pump for a navel ship is very important because the noise levels of the pump must not exceed criteria such as MIL-STD. In this paper, several practical examples of reducing the noise levels are presented. The examples show that the inadequate rotor-balancing and shaft-alignment results in the increase of the structure-borne noise on all lower mounts. It is also found that the unequal loading on mounts can cause the dramatically increasing the noise levels on certain local positions. Since the piping system arrangement such as valve location, flexible joint, and elbow location affects on the noise measurement, care must be taken to minimize the unnecessary noise from the piping system.

  • PDF