• Title/Summary/Keyword: noise and granularity

Search Result 5, Processing Time 0.024 seconds

A Study on the Contour-Preserving Image Filtering for Noise Removal (잡음 제거를 위한 윤곽선 보존 기법에 관한 연구)

  • Yoo, Choong-Woong;Ryu, Dae-Hyun;Bae, Kang-Yeul
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.24-29
    • /
    • 1999
  • In this paper, a simple contour-preserving filtering algorithm is proposed. The goal of the contour-preserving filtering method is to remove noise ad granularity as the preprocessing for the image segmentation procedure. Our method finds edge map and separates the image into the edge region and the non-edge region using this edge map. For the non-edge region, typical smoothing filters could be used to remove the noise and the small areas during the segmentation procedure. The result of simulation shows that our method is slightly better than the typical methods such as the median filtering and gradient inverse weighted filtering in the point of view of analysis of variance (ANOVA).

  • PDF

Halftoning Method Using the Dispersed CMY Dithering and Blue Noise Mask (블루 노이즈 마스크와 분산 CMY 디더링을 이용한 하프토닝)

  • 김윤태;조양호;이철희;하영호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, we propose a new method dispersing spatially C(Cyan), M(Magenta), Y(Yellow) instead of K(black) in the bright region. The overlapping of black dots decreases brightness in the dark region, and black dots are very sensitive to human visual system in the bright region. Therefore, to avoid this problem, bright and dark gray region in the color image is considered in the proposed approach. A new method which uses CMY simultaneously in single mask is proposed, and CMY dots are used dispersing spatially for the bright region instead of black dot by this method. And tone curve connection is used to consider the gray level of dark region. In previous method, BNM (Blue Noise Mask) has high granularity and a narrow dynamic range. But the proposed method has the low granularity, wide dynamic range, and high contrast properties. Because the proposed method uses three times dots spatially in the different position than a conventional BNM, it can express more spatial information and a similar gray level compared with BNM.

Multi-granularity Switching Structure Based on Lambda-Group Model

  • Wang, Yiyun;Zeng, Qingji;Jiang, Chun;Xiao, Shilin;Lu, Lihua
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.119-122
    • /
    • 2006
  • We present an intelligent optical switching structure based on our lambda-group model along with a working scheme that can provide a distinctive approach for dividing complicated traffic into specific tunnels for better optical performance and grooming efficiency. Both the results and figures from our experiments show that the particular channel partition not only helps in reducing ports significantly, but also improves the average signal-to-noise ratio of the wavelength channel and the blocking performance for dynamic connection requests.

  • PDF

Correction Method of Wiener Spectrum (WS) on Digital Medical Imaging Systems (디지털 의료영상에서 위너스펙트럼(Wiener spectrum)의 보정방법)

  • Kim, Jung-Min;Lee, Ki-Sung;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • Noise evaluation for an image has been performed by root mean square (RMS) granularity, autocorrelation function (ACF), and Wiener spectrum. RMS granularity stands for standard deviation of photon data and ACF is acquired by integration of 1 D function of distance variation. Fourier transform of ACF results in noise power spectrum which is called Wiener spectrum in image quality evaluation. Wiener spectrum represents noise itself. In addition, along with MTF, it is an important factor to produce detective quantum efficiency (DQE). The proposed evaluation method using Wiener spectrum is expected to contribute to educate the concept of Wiener spectrum in educational organizations, choose the appropriate imaging detectors for clinical applications, and maintain image quality in digital imaging systems.

  • PDF

SPMLD: Sub-Packet based Multipath Load Distribution for Real-Time Multimedia Traffic

  • Wu, Jiyan;Yang, Jingqi;Shang, Yanlei;Cheng, Bo;Chen, Junliang
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.548-558
    • /
    • 2014
  • Load distribution is vital to the performance of multipath transport. The task becomes more challenging in real-time multimedia applications (RTMA), which impose stringent delay requirements. Two key issues to be addressed are: 1) How to minimize end-to-end delay and 2) how to alleviate packet reordering that incurs additional recovery time at the receiver. In this paper, we propose sub-packet based multipath load distribution (SPMLD), a new model that splits traffic at the granularity of sub-packet. Our SPMLD model aims to minimize total packet delay by effectively aggregating multiple parallel paths as a single virtual path. First, we formulate the packet splitting over multiple paths as a constrained optimization problem and derive its solution based on progressive approximation method. Second, in the solution, we analyze queuing delay by introducing D/M/1 model and obtain the expression of dynamic packet splitting ratio for each path. Third, in order to describe SPMLD's scheduling policy, we propose two distributed algorithms respectively implemented in the source and destination nodes. We evaluate the performance of SPMLD through extensive simulations in QualNet using real-time H.264 video streaming. Experimental results demonstrate that: SPMLD outperforms previous flow and packet based load distribution models in terms of video peak signal-to-noise ratio, total packet delay, end-to-end delay, and risk of packet reordering. Besides, SPMLD's extra overhead is tiny compared to the input video streaming.