• Title/Summary/Keyword: node lifetime

Search Result 375, Processing Time 0.027 seconds

An Energy Efficient Unequal Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율적인 불균형 클러스터링 알고리즘)

  • Lee, Sung-Ju;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.783-790
    • /
    • 2009
  • The necessity of wireless sensor networks is increasing in the recent years. So many researches are studied in wireless sensor networks. The clustering algorithm provides an effective way to prolong the lifetime of the wireless sensor networks. The one-hop routing of LEACH algorithm is an inefficient way in the energy consumption of cluster-head, because it transmits a data to the BS(Base Station) with one-hop. On the other hand, other clustering algorithms transmit data to the BS with multi-hop, because the multi-hop transmission is an effective way. But the multi-hop routing of other clustering algorithms which transmits data to BS with multi-hop have a data bottleneck state problem. The unequal clustering algorithm solved a data bottleneck state problem by increasing the routing path. Most of the unequal clustering algorithms partition the nodes into clusters of unequal size, and clusters closer to the BS have small-size the those farther away from the BS. However, the energy consumption of cluster-head in unequal clustering algorithm is more increased than other clustering algorithms. In the thesis, I propose an energy efficient unequal clustering algorithm which decreases the energy consumption of cluster-head and solves the data bottleneck state problem. The basic idea is divided a three part. First of all I provide that the election of appropriate cluster-head. Next, I offer that the decision of cluster-size which consider the distance from the BS, the energy state of node and the number of neighborhood node. Finally, I provide that the election of assistant node which the transmit function substituted for cluster-head. As a result, the energy consumption of cluster-head is minimized, and the energy consumption of total network is minimized.

Local Grid-based Multipath Routing Protocol for Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 지역적 격자 기반 다중 경로 전송 방안)

  • Yang, Taehun;Kim, Sangdae;Cho, Hyunchong;Kim, Cheonyong;Kim, Sang-Ha
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1428-1436
    • /
    • 2016
  • A multipath routing in wireless sensor networks (WSNs) provides advantage such as reliability improvement and load balancing by transmitting data through divided paths. For these reasons, existing multipath routing protocols divide path appropriately or create independent paths efficiently. However, when the sink node moves to avoid hotspot problem or satisfy the requirement of the applications, the existing protocols have to reconstruct multipath or exploit foot-print chaining mechanism. As a result, the existing protocols will shorten the lifetime of a network due to excessive energy consumption, and lose the advantage of multipath routing due to the merging of paths. To solve this problem, we propose a multipath creation and maintenance scheme to support the mobile sink node. The proposed protocol can be used to construct local grid structure with restricted area and exploit grid structure for constructing the multipath. The grid structure can also be extended depending on the movement of the sink node. In addition, the multipath can be partially reconstructed to prevent merging paths. Simulation results show that the proposed protocol is superior to the existing protocols in terms of energy efficiency and packet delivery ratio.

A routing Algorithm by Broadcasting a Bitmap in Wireless Sensor Networks (무선 센서 네트워크에서의 비트맵 브로드캐스팅 라우팅 알고리즘)

  • Jung Sang-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.459-468
    • /
    • 2006
  • Current routing in sensor networks focuses on finding methods for energy-efficient route setup and reliable relaying of data from the sensors to the sink so that the lifetime of the network is maximized. The existing routing protocols do not have routing tables to determine a path when packets are transferred. A sensor network by a routing table increases a cost of maintaining and updating a path, because sensor nodes have characteristics to be mobile and constrained capacity and resources. This paper proposes a new routing algorithm by broadcasting a bitmap in order to reduce the number of messages transferred when routing paths are established. Each node has a routing table with a bitmap, which contains link information. A bitmap is formed two-dimensional array, which consists of each row and column represented with a bit. The node only updates its own bitmap if it receives a bitmap from another adjacent nodes after the broadcasting. There by, each node has a bitmap with partial links information not total links information on the network. The proposed routing algorithm reduces the number of messages for routing establishment at least 10% compared with the previous algorithms.

A Wireless Sensor Network Systems to Identify User and Detect Location Transition for Smart Home (지능형 주택을 위한 구성원 식별 및 위치 이동 감지 센서 네트워크 시스템)

  • Lee, Seon-Woo;Yang, Seung-Yong
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.396-402
    • /
    • 2010
  • The tracking of current location of residents is an essential requirement for context-aware service of smart houses. This paper presents a wireless sensor network system which could detect location transition such as entrance and exit to a room and also identify the user who passed the room, without duty of wearing any sort of tag. We designed new sensor node to solve the problem of short operation lifetime of previous work[1] which has two pyroelectric infrared (PIR) sensors and an ultrasonic sensor, as well as a 2.4 GHz radio frequency wireless transceiver. The proposed user identification method is to discriminate a person based on his/her height by using an ultrasonic sensor. The detection idea of entering/exiting behavior is based on order of triggering of two PIR sensors. The topology of the developed wireless sensor network system is simple star structure in which each sensor node is connected to one sink node directly. We evaluated the proposed sensing system with a set of experiments for three subjects in a model house. The experimental result shows that the averaged recognition rate of user identification is 81.3% for three persons. and perfect entering/exiting behavior detection performance.

An Enhanced Route Selection Algorithm Considering Packet Transmission Cost and Route Re-Establishment Cost in Ad Hoc Networks (애드 혹 네트워크에서 패킷 전송 비용과 경로 재설정 비용을 고려한 경로 선택 알고리즘)

  • Shin Il-Hee;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.6 s.324
    • /
    • pp.49-58
    • /
    • 2004
  • The existing route re-establishment methods which intend to extend the lifetime of the network attempt to find a new route in order not to overly consume energy of certain nodes. These methods outperforms other routing algorithms in the network lifetime aspect because that they try to consume energy evenly for the entire network. However, these algorithms involve heavy signaling overheads because they find new routes based on flooding method and route re-establishment occurs often. Because of the overhead they often can not achieve the level of performance they intend to. In this paper, we propose a new route selection algorithm which takes into account costs for the packet transmission and the route re-establishment. Since the proposed algerian considers future route re-establishment costs when it first find the route, it spends less energy to transmit given amount of data while evenly consuming energy as much as possible. Simulation results show that the proposed algorithm outperforms the existing route re-establishment methods in that after simulation it has the largest network energy which is the total summation of remaining energy of each node, the smallest energy consumed for route re-establishment, and the smallest energy needed for maintaining a session.

Residual Energy-Aware Duty-Cycle Scheduling Scheme in Energy Harvesting Wireless Sensor Networks (에너지 생산이 가능한 무선 센서 네트워크에서 잔여 에너지 인지 듀티-사이클 스케줄링 기법)

  • Lee, Sungwon;Yoo, Hongseok;Kim, Dongkyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.691-699
    • /
    • 2014
  • In order to increase network lifetime, duty-cycle MAC protocols which can reduce energy consumption caused by idle listening is proposed for WSNs. In common duty-cycle MAC protocols, each sensor node calculates its duty-cycle interval based on the current amount of residual energy. However, in WSNs with the capability of energy harvesting, existing duty-cycle intervals based on the residual energy may cause the sensor nodes which have high energy harvesting rate to suffer unnecessary sleep latency. Therefore, a duty-cycle scheduling scheme which adjust the duty-cycle interval based on both of the residual energy and the energy harvesting rate was proposed in our previous work. However, since this duty-cycle MAC protocol overlooked the performance variation according to the change of duty-cycle interval and adjusted the duty-cycle interval only linearly, the optimal duty-cycle interval could not be obtained to meet application requirements. In this paper, we propose three methods which calculate the duty-cycle interval and analyse their results. Through simulation study, we verify that network lifetime, end-to-end delay and packet delivery ratio can be improved up to 23%, 44% and 31% as compared to the existing linear duty-cycle scheduling method, respectively.

An Efficient Routing Protocol Considering Path Reliability in Cognitive Radio Ad-hoc Networks (인지 무선 애드혹 네트워크에서 경로 신뢰성을 고려한 효율적인 라우팅 기법)

  • Choi, Jun-Ho;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.730-742
    • /
    • 2014
  • In the case of On-demand routing protocol in cognitive radio ad-hoc networks, broadcasting of control packets may occur common control channel overload and packet collisions during the routing procedure. This situation is to increase the overhead of path finding and also limited to find the accurate and reliable path. Since reliable channel and path finding is restricted, path life time is shorten and path reliability is reduced. In this paper, we propose a new routing algorithm that reduces control channel overhead and increases path life time by considering the probability of appearance of primary user and channel status of neighbor nodes. Each node performs periodic local sensing to detect primary user signal and to derive primary user activity patterns. The probability of primary appearance on the current channel and the channel status can be obtained based on the periodic sensing. In addition, each node identifies the quality of the channel by message exchange through a common channel with neighbor nodes, then determines Link_Levels with neighbor nodes. In the proposed method, the Link Level condition reduces the number of control messages that are generated during the route discovery process. The proposed method can improve path life time by choosing a path through Path_Reliability in which stability and quality are weighted depending on the location. Through simulation, we show that our proposed algorithm reduces packet collisions and increases path life time in comparison with the traditional algorithm.

Dynamic-size Multi-hop Clustering Mechanism based on the Distance in Sensor Networks (센서 네트워크에서의 거리에 따른 동적 크기 다중홉 클러스터링 방법)

  • Ahn, Sang-Hyun;Lim, Yu-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.519-524
    • /
    • 2007
  • One of the most important issues on the sensor network with resource limited sensor nodes is prolonging the network lifetime by effectively utilizing the limited node energy. The most representative mechanism to achieve a long lived sensor network is the clustering mechanism which can be further classified into the single hop mode and the multi hop mode. The single hop mode requires that all sensor nodes in a cluster communicate directly with the cluster head(CH) via single hop md, in the multi hop mode, sensor nodes communicate with the CH with the help of other Intermediate nodes. One of the most critical factors that impact on the performance of the existing multi hop clustering mechanism is the cluster size and, without the assumption on the uniform node distribution, finding out the best cluster size is intractable. Since sensor nodes in a real sensor network are distributed non uniformly, the fixed size mechanism may not work best for real sensor networks. Therefore, in this paper, we propose a new dynamic size multi hop clustering mechanism in which the cluster size is determined according to the distance from the sink to relieve the traffic passing through the CHs near the sink. We show that our proposed scheme outperforms the existing fixed size clustering mechanisms by carrying out numerical analysis and simulations.

Fair Queuing for Mobile Sink (FQMS) : Scheduling Scheme for Fair Data Collection in Wireless Sensor Networks with Mobile Sink (모바일 싱크를 위한 균등 큐잉(FQMS) : 모바일 싱크 기반 무선 센서 네트워크에서 균등한 데이터 수집을 위한 스케줄링 기법)

  • Jo, Young-Tae;Park, Chong-Myung;Lee, Joa-Hyoung;Seo, Dong-Mahn;Lim, Dong-Sun;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.204-216
    • /
    • 2010
  • Since Sensor nodes around a fixed sink have huge concentrated network traffic, the battery consumption of them is increased extremely. Therefore the lifetime of sensor networks is limited because of huge battery consumption. To address this problem, a mobile sink has been studied for load distribution among sensor nodes. Since a mobile sink changes its location in sensor networks continuously, the mobile sink has time limits to communicate with each sensor node and unstable signal strength from each sensor node. Therefore, a fair and stable data collection method between a mobile sink and sensor nodes is necessary in this environment. When some sensor nodes are not able to send data to the mobile sink, a real-time application in sensor networks cannot be provided. In this paper, the new scheduling method, FQMS (Fair Queuing for Mobile Sink), is proposed for fair and stable data collection for mobile sinks in sensor networks. The FQMS guarantees balanced data collecting between sensor nodes for a mobile sink. In out experiments, the FQMS receives more packets from sensor nodes than legacy scheduling methods and provides fair data collection, because moving speed of a mobile sink, distance between a mobile sink and sensor nodes and the number of sensor nodes are considered.

A New Routing Algorithm for Performance improvement of Wireless Sensor Networks (무선 센서 네트워크의 성능 향상을 위한 새로운 라우팅 알고리즘)

  • Yang, Hyun-Suk;Kim, Do-Hyung;Park, Joon-Yeol;Lee, Tae-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In this paper, a distributed 2-hop routing algorithm is proposed. The main purpose of the proposed algorithm is to reduce the overall power consumption of each sensor node so that the lifetime of WSN(wireless sensor network) is prolonged. At the beginning of each round, the base station transmits a synchronization signal that contains information on the priority table that is used to decide whether each sensor node is elected as a cluster head or not. The priority table is constructed so that sensor nodes closer to half energy distance from the base station get the higher priority. 2-hop routing is done as follows. Cluster heads inside half energy distance from the base station communicate with the base station directly. Those outside half energy distance have to decide whether they choose 2-hop routing or 1-hop routing. To do this, each cluster head outside half energy distance calculates the energy consumption needed to communicate with the base station via 1-level cluster head or directly. If less energy is needed when passing through the 1-level cluster head, 2-hop routing is chosen and if not, 1-hop routing is chosen. After routing is done each sensor nodes start sensing data.