• Title/Summary/Keyword: nod genes

Search Result 16, Processing Time 0.022 seconds

Molecular Cloning of nod Genes from Bradyrhizobium sp. SNU001 (Bradyrhizobium sp. SNU001 nod 유전자 클로닝)

  • 고세리;심웅섭;안정선
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.246-251
    • /
    • 1992
  • Molccular cloning of nod genes from Bradvrhizobium sp. SNU001, a nitrogen-fixing symbiont isolated from thc root nodules of soybean (Clycine trim) . was carried out. nod genes were found to be located on thc genome of the symbiont by gcnomic hybridization with 4.5 kb EcoRI/HndIII fragment (nod DABC) of Rhizohium meliloti as probe. Genomic library of this symbiont was constructed using h phage EMBL3-BanlHI vector. from which five nod positive clones were sclectcd by primary and secondary screening methods. The partial restriction map of inserted genomic DNA of h CNS-l(c1one 2) was constructed. and 3.9 kh Bun7HI fragment. which showed strong hybridization signal to the probe, was subcloned into pBS KS(+) plasmid vector. Partial restriction inap ot' a selected subclone (pBjCNS-I) was constructed and nod DABC was found to be located on the 1.8 kb KpnI/Sacl fragment of this subclone.

  • PDF

Expression of EuNOD-ARP1 Encoding Auxin-repressed Protein Homolog Is Upregulated by Auxin and Localized to the Fixation Zone in Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Lee, Hyoungseok;Oh, Chang Jae;Lee, Nam Houn;An, Chung Sun
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • Root nodule formation is controlled by plant hormones such as auxin. Auxin-repressed protein (ARP) genes have been identified in various plant species but their functions are not clear. We have isolated a full-length cDNA clone (EuNOD-ARP1) showing high sequence homology to previously identified ARP genes from root nodules of Elaeagnus umbellata. Genomic Southern hybridization showed that there are at least four ARP-related genes in the genome of E. umbellata. The cDNA clone encodes a polypeptide of 120 amino acid residues with no signal peptide or organelle-targeting signals, indicating that it is a cytosolic protein. Its cytosolic location was confirmed using Arabidopsis protoplasts expressing a EuNOD-ARP1:smGFP fusion protein. Northern hybridization showed that EuNOD-ARP1 expression was higher in root nodules than in leaves or uninoculated roots. Unlike the ARP genes of strawberry and black locust, which are negatively regulated by exogenous auxin, EuNOD-ARP1 expression is induced by auxin in leaf tissue of E. umbellata. In situ hybridization revealed that EuNOD-ARP1 is mainly expressed in the fixation zone of root nodules.

Cloning and Sequence Analysis of the nodD1 Gene from Bradyrhizobium sp.(Cassia) CN9135 (Bradyrhizobium sp.(Cassia) CN9135의 nodD1 유전자의 크로닝과 염기서열 분석)

  • 최순용;고상균
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.267-272
    • /
    • 2000
  • A 1.7-kb fragment containing the nodD1 genes of Bradyrhizobium sp. (Cassia) CN9135 was amplified by PCR with primers based on B. japonicum USDA110. This fragment was cloned and sequenced. Analysis of the sequence showed open reading frames highly homologous to nodD1 from other bradyrhizobial sources. The sequence showed higher homology to nodD1 gene of B. elkanii than to those from b. japonicum. Our results suggest that Bradyrhizobium sp. (Cassia) CN9135 may be more closely related to B. elkanii than to B. japonicum.

  • PDF

The Genetic Variations of NOD2 Are Associated With White Blood Cell Counts

  • Jin, Hyun-Seok;Park, Sangwook
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.334-340
    • /
    • 2018
  • The cytoplasmic elicitor, nucleotide-binding domain and leucine-rich repeat containing domain receptors (NLRs) is well established molecules in its role in inflammatory response. Among 22 NLR receptors, NOD2 is one of the intensively studied genes of elucidating for the inflammatory bowel disease and Crohn's disease as well. Recent research have accumulated that common genetic mutations in Parkinson's disease (PD) are increasingly related to the susceptibility to Crohn's disease. In this study, with the Korean Genome and Epidemiology Study, we aimed to perform the association between NOD2 polymorphisms and blood cell counts [WBC (white blood cell) count, RBC (red blood cell) count, platelet count], which linked supposedly to cytoplasmic inflammatory responses with clinical specialty. Linear regression analyses were performed, controlling for residential area, sex, and age as covariates. As a results, 12 SNPs from NOD2 gene were significantly associated with WBC counts (Bonferroni correction P-value criteria < 0.05/23=0.00218). In this study, we could ensure an association with NOD2 gene and WBC counts. This is the first report to have relationship between SNPs of NOD2 gene and WBC counts.

Nucleotide-binding oligomerization domain protein 2 attenuates ER stress-induced cell death in vascular smooth muscle cells

  • Kwon, Min-Young;Hwang, Narae;Lee, Seon-Jin;Chung, Su Wol
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.665-670
    • /
    • 2019
  • Nucleotide-binding oligomerization domain protein 2 (NOD2), an intracellular pattern recognition receptor, plays important roles in inflammation and cell death. Previously, we have shown that NOD2 is expressed in vascular smooth muscle cells (VSMCs) and that NOD2 deficiency promotes VSMC proliferation, migration, and neointimal formation after vascular injury. However, its role in endoplasmic reticulum (ER) stress-induced cell death in VSMCs remains unclear. Thus, the objective of this study was to evaluate ER stress-induced viability of mouse primary VSMCs. NOD2 deficiency increased ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) in VSMCs in the presence of tunicamycin (TM), an ER stress inducer. In contrast, ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) were decreased in NOD2-overexpressed VSMCs. We found that the $IRE-1{\alpha}-XBP1$ pathway, one of unfolded protein response branches, was decreased in NOD2-deficient VSMCs and reversed in NOD2-overexpressed VSMCs in the presence of TM. Furthermore, NOD2 deficiency reduced the expression of XBP1 target genes such as GRP78, PDI-1, and Herpud1, thus improving cell survival. Taken together, these data suggest that the induction of ER stress through NOD2 expression can protect against TM-induced cell death in VSMCs. These results may contribute to a new paradigm in vascular homeostasis.

Genes Involved in Symbiotic Nitrogen Fixation (질소고정 공생관계 관련 유전자)

  • 안정선
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.81-101
    • /
    • 1987
  • In an attempt to revies the informations about genes involved in symbiotic nitrogen fixation, developmental processes in which host plant interact with microbe during nodule formation were introduced first. The structure, function and regulation of the genes discussed were mainly about microbial genes; those involved in the process of nodule formation (nod-genes) and of nitrogen fixation (nif-genes). Informations about the host genes involved in the symbiosis were discussed briefly.

  • PDF

Production of IL-1β and Inflammasome with Up-Regulated Expressions of NOD-Like Receptor Related Genes in Toxoplasma gondii-Infected THP-1 Macrophages

  • Chu, Jia-Qi;Shi, Ge;Fan, Yi-Ming;Choi, In-Wook;Cha, Guang-Ho;Zhou, Yu;Lee, Young-Ha;Quan, Juan-Hua
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.711-717
    • /
    • 2016
  • Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines, which are important for innate immunity. NLRs, i.e., nucleotide-binding oligomerization domain (NOD)-like receptors, play a crucial role as innate immune sensors and form multiprotein complexes called inflammasomes, which mediate caspase-1-dependent processing of $pro-IL-1{\beta}$. To elucidate the role of inflammasome components in T. gondiiinfected THP-1 macrophages, we examined inflammasome-related gene expression and mechanisms of inflammasome-regulated cytokine $IL-1{\beta}$ secretion. The results revealed a significant upregulation of $IL-1{\beta}$ after T. gondii infection. T. gondii infection also upregulated the expression of inflammasome sensors, including NLRP1, NLRP3, NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and NAIP, in a time-dependent manner. The infection also upregulated inflammasome adaptor protein ASC and caspase-1 mRNA levels. From this study, we newly found that T. gondii infection regulates NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and neuronal apoptosis inhibitor protein (NAIP) gene expressions in THP-1 macrophages and that the role of the inflammasome-related genes may be critical for mediating the innate immune responses to T. gondii infection.

Nodulation Experiment by Cross-Inoculation of Nitrogen-Fixing Bacteria Isolated from Root Nodules of Several Leguminous Plants

  • Ahyeon Cho;Alpana Joshi;Hor-Gil Hur;Ji-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.570-579
    • /
    • 2024
  • Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.

Molecular Genetics of the Model Legume Medicago truncatula

  • Nam, Young-Woo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2001
  • Medicago truncatula is a diploid legume plant related to the forage crop alfalfa. Recently, it has been chosen as a model species for genomic studies due to its small genome, self-fertility, short generation time, and high transformation efficiency. M. truncatula engages in symbiosis with nitrogen-fixing soil bacterium Rhizobium meliloti. M. truncatula mutants that are defective in nodulation and developmental processes have been generated. Some of these mutants exhibited altered phenotypes in symbiotic responses such as root hair deformation, expression of nodulin genes, and calcium spiking. Thus, the genes controlling these traits are likely to encode functions that are required for Nod-factor signal transduction pathways. To facilitate genome analysis and map-based cloning of symbiotic genes, a bacterial artificial chromosome library was constructed. An efficient polymerase chain reaction-based screening of the library was devised to fasten physical mapping of specific genomic regions. As a genomics approach, comparative mapping revealed high levels of macro- and microsynteny between M. truncatula and other legume genomes. Expressed sequence tags and microarray profiles reflecting the genetic and biochemical events associated with the development and environmental interactions of M. truncatula are assembled in the databases. Together, these genomics programs will help enrich our understanding of the legume biology.

  • PDF

Effects of α-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation

  • Kim, Su Min;Ha, Ji Sun;Han, A Reum;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.613-618
    • /
    • 2019
  • Microglial cells are known as the main immune cells in the central nervous system, both regulating its immune response and maintaining its homeostasis. Furthermore, the antioxidant ${\alpha}-lipoic$ acid (LA) is a recognized therapeutic drug for diabetes because it can easily invade the blood-brain barrier. This study investigated the effect of ${\alpha}-LA$ on the inflammatory response in lipopolysaccharide (LPS)-treated BV-2 microglial cells. Our results revealed that ${\alpha}-LA$ significantly attenuated several inflammatory responses in BV-2 microglial cells, including pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6, and other cytotoxic molecules, such as nitric oxide and reactive oxygen species. In addition, ${\alpha}-LA$ inhibited the LPS-induced phosphorylation of ERK and p38 and its pharmacological properties were facilitated via the inhibition of the nuclear factor kappa B signaling pathway. Moreover, ${\alpha}-LA$ suppressed the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, multiprotein complexes consisting of NLRP3 and caspase-1, which are involved in the innate immune response. Finally, ${\alpha}-LA$ decreased the genes accountable for the M1 phenotype, $IL-1{\beta}$ and ICAM1, whereas it increased the genes responsible for the M2 phenotype, MRC1 and ARG1. These findings suggest that ${\alpha}-LA$ alleviates the neuroinflammatory response by regulating microglial polarization.