• Title/Summary/Keyword: nocturnal O3 concentration

Search Result 6, Processing Time 0.018 seconds

The Study on the High Nocturnal Concentration of Ground Level Ozone (야간 지표 고농도 오존에 관한 연구)

  • 김유근;홍정혜
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.545-554
    • /
    • 1998
  • The diurnal variation of O3 concentration shows two peaks, the first peak at noontime and the secondary peak at night. In order to show why the secondary peak, high nocturnal O3 concentration, occurs without sunlight which is a essential factor of a photochemical response, the O3 concentration, several weather elements and synoptic weather map were used for June∼September at 1995, 1996. The mean concentration of high nocturnal O3 concentration days is higher by 5.4 ppb than that of low nocturnal O3 concentration days. The nocturnal O3 concentration is higher than that of diurnal O3 concentration during high nocturnal O3 concentration days, at July, 1995 and June, 1996. The high nocturnal O3 concentration is related to low air pressure, high cloud cover and high wind speed. The correlation coefficient, r. between nocturnal O3 concentration and wind speed, pressure and cloud cover is 0.387, -0.218, and 0.194, respeftiviely. It is interesting that the O3 concentration increases at Pusan when the typhoon passes by. The same result showed at Taegu when the typhoon FAYE passed by. According to the analysis of nocturnal O3 concentration for June∼September at 1995 and 1996, it seems that the high nocturnal O3 concentration relates to the trough and cyclones passing by Pusan.

  • PDF

Nocturnal Inversion Layer observed by Tethersonde and AWS System and its Relation to Air Pollution at Ulsan (Tethersonde와 기상탑 관측 자료를 이용한 울산지역 야간 역전에 따른 대기오염도 변화와의 관계)

  • Lim Yun-Kyu;Kim Yoo-Keun;Oh In-Bo;Song Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.555-563
    • /
    • 2005
  • This study presents the characteristics of nocturnal inversion layer and their effect on the concentration variations of surface air pollutants using tethersonde and automatic weather station (AWS, 2 layer tower) system in Ulsan during 2003, The method for the distinction of inversion intensity was decided based on the sum of nocturnal temperature gradient. As the results, there was a close correlation (correlation coefficient of 0,76) between the maximum inversion height obtained from tethersonde and the sum of nocturnal temperature gradient. The air pollutant concentration was also directly proportional to the inversion intensity. When the inversion intensity was strong in the nighttime, ozone $(O_3)$ concentration was lower, while nitrogen dioxide $(NO_2)$ concentration was higher. The carbon monoxide (CO) concentration was gradually higher according to the nocturnal inversion intensity, whereas sulfur dioxide $(SO_2)$ concentration was relatively constant. In addition, we found that there was no correlation between the inversion intensity and TSP concentration.

Numerical Analysis on Biogenic Emission Sources Contributing to Urban Ozone Concentration in Osaka, Japan

  • Nishimura, Hiroshi;Shimadera, Hikari;Kondo, Akira;Akiyama, Kazuyo;Inoue, Yoshio
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.259-271
    • /
    • 2015
  • This study conducted analyses on biogenic volatile organic compounds (BVOC) emission sources contributing to urban ozone ($O_3$) concentration in Osaka Prefecture, Japan in summer 2010 by using the Weather Research and Forecasting model (WRF) version 3.5.1 and the Community Multiscale Air Quality model (CMAQ) version 5.0.1. This prefecture is characterized by highly urbanized area with small forest area. The contributions of source regions surrounding Osaka were estimated by comparing the baseline case and zero-out cases for BVOC emissions from each source region. The zero-out emission runs showed that the BVOC emissions substantially contributed to urban $O_3$ concentration in Osaka (10.3 ppb: 15.9% of mean daily maximum 1-h $O_3$ concentration) with day-by-day variations of contributing source regions, which were qualitatively explained by backward trajectory analyses. Although $O_3$ concentrations were especially high on 23 July and 2 August 2010, the contribution of BVOC on 23 July (35.4 ppb: 25.6% of daily maximum $O_3$) was much larger than that on 2 August (20.9 ppb: 14.2% of daily maximum $O_3$). To investigate this difference, additional zero-out cases for anthropogenic VOC (AVOC) emissions from Osaka and for VOC emissions on the target days were performed. On 23 July, the urban $O_3$ concentration in Osaka was dominantly increased by the transport from the northwestern region outside Osaka with large contribution of $O_3$ that was produced through BVOC reactions by the day before and was retained over the nocturnal boundary layer. On 2 August, the concentration was dominantly increased by the local photochemical production inside Osaka under weak wind condition with the particularly large contribution of AVOC emitted from Osaka on the day.

Characteristics of Ozone Concentrations around an Urban Valley based on the Intensive Air Quality Measurement during Spring and Summer of 2006 (2006년 봄, 여름철 대기오염물질 집중측정을 통한 도시 계곡지역의 오존농도 특성 분석)

  • Song, Sang-Keun;Kim, Yoo-Keun;Kang, Jae-Eun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.289-303
    • /
    • 2009
  • The chemical and meteorological effects on the concentration variations of ozone ($O_3$) were evaluated based on the intensive air quality measurement (5 pollutants and aromatic volatile organic compounds (AVOCs)) in and out-side an urban valley during spring and summer of 2006. The 5 pollutants measured in the study area include $O_3$, $NO_2$, NO, $PM_{10}$, and CO; the AVOCs include benzene (BEN), toluene (TOL), ethylbenzene (EB), m,p-xylene (MPX), and o-xylene (OX). For the purpose of this study, study areas were classified into two categories: valley area (VA) with a semi-closed topography covering a number of industrial complex, public building, and mountains and non-valley area (NVA) surrounding the suburban and residential areas. In general, the mean concentration levels of most pollutants (except for $PM_{10}$) in the VA were higher than those in the NVA. It was found that the average $O_3$ increase in the VA during spring might result from the combined effects such as the photochemical production from diverse anthropogenic sources and the $O_3$ accumulation due to geographical features (e.g., the semi-closed topography) and wind conditions (e.g., a low wind speed). In addition, the nocturnal $O_3$ increase in the VA during spring was primarily caused by local wind conditions (e.g., mountain and valley winds) with the low wind speed (approximately $1{\sim}2\;m\;s^{-1}$). On the other hand, the $O_3$ difference between the two areas during summer might be because of the photo-chemical production with the $O_3$ precursors (especially the AVOCs) rather than the contribution of wind conditions.

Diurnal Variabilities of Atmospheric Mercury Distribution and Its Relationship with Sink Mechanism (대기 중 수은의 일주기 농도분포와 수멸작용의 관계에 대한 고찰)

  • 김민영;김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.49-60
    • /
    • 2000
  • The concentration of atmospheric mercury(Hg0 and relevent environmental parameters that include both meteorological and criteria pollutant data were dtermined at hourly intervals during two field campaigns covering the periods of September 1997 and May/June 1998. The mean concentrations of Hg for the two study periods were computed as 3.94 and 3.43ngm-3, respectively. Through a separation of these data into both daytime and nighttime periods, we further analyzed diurnal variation patterns for Hg between two different seasons. Using our Hg data sets, we were able to recognize two contrasting diurnal variation patterns of Hg between two diffeerent seasons that can be characterized as: (1) the occurrences of peak Hg concentration during daytime(fall0 and (2) slight reductions in daytime Hg concentration relative to nighttiime Hg data(summer). To study the systematic differences in diurnal patterns between two different seasons, we analyzed Hg data in terms of different statistical approaches such as correlation(and linear regression0 and factor analysis. Results of these analyses consistently indicated that different mechanisms were responsible for controlling the daytime distribution patterns of Hg. The variation of boundary layer conditions betwen day/night periods may have been important in introducing the relative reduction in daytime Hg levels during summer. However, when the relationship between Hg and concurrently determined O3 is concerned, these differences are unlikely to be an effective sink mechanism within the ranges of ozone concentrations determined concurrently during this study, regardless of season. To further provide the general account for short-term variations in Hg distribution data, we should be able to describe the various factors underlying its sink mechanism.

  • PDF

The Influence of Obstructive Sleep Apnea on Systemic Blood Pressure, Cardiac Rhythm and the Changes of Urinary (폐쇄성 수면 무호흡이 전신성 혈압, 심조율 및 요 Catecholamines 농도 변화에 미치는 영향)

  • Lo, Dae-Keun;Choi, Young-Mee;Song, Jeong-Sup;Park, Sung-Hak;Moon, Hwa-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.153-168
    • /
    • 1998
  • Background: The existing data indicate that obstructive sleep apnea syndrome contributes to the development of cardiovascular dysfunction such as systemic hypertension and cardiac arrhythmias, and the cardiovascular dysfunction has a major effect on high long-term mortality rate in obstructive sleep apnea syndrome patients. To a large extent the various studies have helped to clarify the pathophysiology of obstructive sleep apnea, but many basic questions still remain unanswered. Methods: In this study, the influence of obstructive sleep apnea on systemic blood pressure, cardiac rhythm and urinary catecholamines concentration was evaluated. Over-night polysomnography, 24-hour ambulatory blood pressure and ECG monitoring, and measurement of urinary catecholamines, norepinephrine (UNE) and epinephrine (UEP), during waking and sleep were undertaken in obstructive sleep apnea syndrome patients group (OSAS, n=29) and control group (Control, n=25). Results: 1) In OSAS and Control, UNE and UEP concentrations during sleep were significantly lower than during waking (P<0.01). In UNE concentrations during sleep, OSAS showed higher levels compare to Control (P<0.05). 2) In OSAS, there was a increasing tendency of the number of non-dipper of nocturnal blood pressure compare to Control (P=0.089). 3) In both group (n=54), mean systolic blood pressure during waking and sleep showed significant correlation with polysomnographic data including apnea index (AI), apnea-hypopnea index (AHI), arterial oxygen saturation nadir ($SaO_2$ nadir) and degree of oxygen desaturation (DOD). And UNE concentrations during sleep were correlated with AI, AHI, $SaO_2$ nadir, DOD and mean diastolic blood pressure during sleep. 4) In OSAS with AI>20 (n==14), there was a significant difference of heart rates before, during and after apneic events (P<0.01), and these changes of heart rates were correlated with the duration of apnea (P<0.01). The difference of heart rates between apneic and postapneic period (${\Delta}HR$) was significantly correlated with the difference of arterial oxygen saturation between before and after apneic event (${\Delta}SaO_2$) (r=0.223, P<0.001). 5) There was no significant difference in the incidence of cardiac arrhythmias between OSAS and Control In Control, the incidence of ventricular ectopy during sleep was significantly lower than during waking. But in OSAS, there was no difference between during waking and sleep. Conclusion : These results suggested that recurrent hypoxia and arousals from sleep in patients with obstructive sleep apnea syndrome may increase sympathetic nervous system activity, and recurrent hypoxia and increased sympathetic nervous system activity could contribute to the development of cardiovascular dysfunction including the changes of systemic blood pressure and cardiac function.

  • PDF