• Title/Summary/Keyword: no-tillage cultivation

Search Result 58, Processing Time 0.024 seconds

No-Tillage Agriculture of Korean-Style on Recycled Ridge III. Changes in Pepper Growth and Biodiversity at Plastic Film Greenhouse Soil in Organic Cultivation of No-tillage Systems (두둑을 재활용한 한국형 무경운 농업 III. 시설 무경운 유기재배 고추의 생육 및 생물다양성의 변화)

  • Yang, Seung-Koo;Shin, Kil-Ho;Kim, Sun-Kook;Kim, Do-Ik;Han, Yeon-Soo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.71-84
    • /
    • 2017
  • Hot pepper growth in no-tillage cultivation on recycled ridge was increased by 22% compared with tillage cultivation. At 3 years after no-tillage cultivation, hot pepper growth was increased by 12% compared with tillage cultivation. Dry weight of unripe hot pepper at 2 years of no-tillage cultivation was 348.4 kg/10a increasing 16% compared with tillage cultivation while dry weight of unripe hot pepper was decreased at 3 years of no-tillage cultivation. Bacteria flora at 2 years of no-tillage cultivation was significantly increased compared with tillage cultivation. Bacteria flora was not significantly different at 3 years of no-tillage cultivation. Actinomyces flora at 2 years of no-tillage cultivation was significantly increased compared with tillage cultivation. Actinomyces flora was decreased at 3 years of no-tillage cultivation. Fungi flora at 2 and 3 years of no-tillage cultivation was increased by 1.3 and 1.7 times respectively, compared with tillage cultivation. Generation amount of carbon dioxide at no-tillage cultivation soil was remarkably decreased by 41% compared with tillage cultivation. Population of animalcule in early stage of hot pepper soil was 2 species and 6 individuals on Collembola and Acari at tillage cultivation. Population of animalcule in hot pepper soil was 5 species and 11 individuals including Chilopode at one year of no-tillage cultivation. Population of animalcule in hot pepper soil was 3 species and 5 individuals including Coleoptera and Chilopode at 2 years of no-tillage cultivation. Population of animalcule was 4 species and 40 individuals including Hypogastrurigae and 8 species and 97 individuals including Earwig (Labidura japornica) at 46 days after transplanting on tillage cultivation. Population of animalcule was 9~10 species and 101~107 individuals on no-tillage cultivation. Nature status for environmental change as index organism was 19 points and 33 points, at tillage and no-tillage cultivation, respectively. These results indicate that no-tillage agriculture of korean-style on recycled ridge plays a very important roles on pepper growth, biodiversity of animalcule, and greenhouse gases at plastic film greenhouse soil in no-tillage systems.

Effects of No-tillage Dry-seeding on Rice Growth and Soil Hardness

  • Choi, Jong-Seo;Kim, Sook-Jin;Park, Jeong Hwa;Kang, Shingu;Park, Ki-Do;Yang, Woonho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.662-668
    • /
    • 2016
  • No-tillage dry-seeding of rice can offer potential benefits by reducing time and labor cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil hardness in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. The seedling stand fell within optimum range for both no-till dry-seeding and wet-hill-seeding on puddled paddy. Plant height, number of tillers and SPAD values in no-tillage dry-seeding cultivation were higher than those observed in other methods. There were no significant differences in grain yield of rice among three cultivation methods. The quality characteristics of milled rice grown in no-tillage dry-seeding were similar to those grown in other cultivation methods. Soil hardness in top 10 cm depth was significantly higher in no-tillage dry-seeding than other cultivation methods, while soil hardness below 10 cm depth was highest in machine transplanting cultivation. Results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yield and grain quality.

Comparative analysis of growth, yields and grain quality of rice among no-tillage dry-seeding, wet-hill-seeding and transplanting

  • Choi, Jong-Seo;Kim, Sook-Jin;Kang, Shingu;Park, Jeong Hwa;Yoon, Young-Hwan;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.208-208
    • /
    • 2017
  • No-tillage practices are expected to provide several benefits such as increasing soil organic matter, reducing labor time and saving energy cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil properties in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. Rice seedling establishment was slightly higher in no-tillage dry-seeding treatment ($145seedling\;m^{-2}$) than wet-hill-seeding on puddled paddy treatment ($111seedling\;m^{-2}$), but the seedling establishment in both treatments fell within the optimum range for direct seeding rice cultivation. Plant height, number of tillers and chlorophyll content (SPAD value) of rice in no-tillage dry-seeding treatment were higher than those of the other treatments. However, no significant differences in grain yield was observed among three cultivation methods, and the yield ranged 5.8 to $5.9ton\;ha^{-1}$. The heading date from seeding under no-tillage dry-seeding treatment was on average 109 days, which was similar to that under machine transplanting treatment (112 days), but 10 days later than that under wet-hill-seeding on puddled paddy treatment (99 days). Grain quality characteristics grown in no-tillage dry-seeding were similar to those grown in the other cultivation methods. These results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yields and grain quality.

  • PDF

Effects of No-Tillage and Split Irrigation on the growth of Pepper Organically Cultivated under Plastic Film Greenhouse Condition (무경운과 분할관수가 시설 유기재배 고추 생육에 미치는 영향)

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.781-796
    • /
    • 2015
  • This study was carried out to investigate the effect of no-tillage and split irrigation on the growth of pepper plant under green house condition in Jeonnam province. Moisture content of soil at whole quantity irrigation in tillage was increased rapidly regardless of soil depth for initial irrigation and then was decreased continuously until next irrigation. Deviation of moisture content in soil was decreased with increasing depth of soil. Moisture contents of top soil and subsoil (20 cm) at whole quantity irrigation in no-tillage were increased with sunrise, and then decreased with sunset. Moisture contents of top soil in tillage, and top soil and subsoil (20 cm) in no-tillage at half quantity irrigation indicated a cyclic diurnal variation by evapotranspiration. Salinity of soil was increased after initial irrigation and then was decreased continuously until next irrigation. With increasing depth of soil, increases of salinity in soil was delayed. Salinity of top soil in no-tillage was increased between AM 11:00 and AM 12:00, and then showed the highest level between PM 2:00 and PM 6:00 on a cyclic diurnal variation by evapotranspiration. Salinity of subsoil (30 cm) in no-tillage was not measured a cyclic diurnal variation. Moisture content and salinity of soil was positive correlation regardless of tillage and no-tillage cultivation. Growth of pepper in no-tillage cultivation was higher than that in tillage cultivation. Main branch Length and stem diameter of half quantity irrigation plot was higher than that of whole quantity irrigation plot regardless of tillage and no-tillage cultivation. After harvesting, the number of pepper fruits of half quantity irrigation plot was increased remarkably by 49% and 47%, in tillage and no-tillage cultivation, respectively. Pepper yield of no-tillage cultivation plot was higher by 8% than that of tillage cultivation plot. Pepper yield of half quantity irrigation plot was increased remarkably by 36% and 39%, in tillage and no-tillage cultivation, respectively.

Changes of Chemical Properties and Correlation under No-tillage Silt Loam Soil with Ridge Cultivation of Plastics Film Greenhouse Condition

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.170-179
    • /
    • 2015
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique to minimize tillage problems under rain interception green house condition including recycling of the ridge and the furrow for following cultivation in Korea. Chemical properties in soils were investigated at 3-years after cultivation at conventional tillage [CT; 2-years no-tillage (2009-2010) and 1-year (2011) tillage] and no-tillage [NT; 2009-2011] field. Soil pH maintained between 5.8 and 6.0 irrespectively tillage and no-tillage. Salinity (EC), contents of total nitrogen (TN), cation exchange capacity (CEC), and exchangeable cations (K, Ca and Mg) in soil were remarkably higher in CT than in NT treatment. Salinity (EC), contents of OM, TN, CEC, and exchangeable cations in top soil and subsoil indicated higher deviation in CT than NT treatment. Organic matters and inorganic matters in soil were positive (+) correlation. Suppression of pepper growth and increase of yield were observed in no-tillage soil compared with tillage soil. These results indicated that no-tillage technique in crop culture could play an important role with respect to chemical properties in silt loam soil.

Effects of cultivation methods on methane emission in rice paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shin-gu;Park, Jeong-wha;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.319-319
    • /
    • 2017
  • Methane is the main greenhouse gas released from rice paddy field. Methane from paddy fields accounts for 11 % of the global total methane emission. The global warming potential (GWP) of methane is 25 times more than that of carbon dioxide on a mass basis. It is well known that most effective practice to mitigate methane in paddy is related to the water management during rice growing season and the use of organic matters. This study was conducted to investigate the effects of tillage and cultivation method on methane emission in paddy. Tillage (tillage and no-tillage) and cultivation methods (transplanting and direct seeding) were combined tillage-transplanting (T-T), tillage-wet hill seeding (T-W), tillage-dry seeding (T-D) and no-till dry seeding (NT-D) to evaluate methane mitigation efficiency. Daily methane emission was decreased on seeding treatments (T-W, T-D, NT-D) than transplanting treatment (T-T). Amount of methane emission during rice growing season is highest in T-T ($411.7CH_4\;kg\;ha^{-1}y^{-1}$) and lowest in NT-D treatment (89.7). In T-W and T-D treatments, methane emissions were significantly decreased by 36 and 51 % respectively compared with T-T. Methane emissions were highly correlated with the dry weight of whole rice plant ($R^2=0.62{\sim}0.93$). T-T treatment showed highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that direct seeding practice in rice production could mitigate the methane emissions without loss in grain yield.

  • PDF

Analysis of Consumption of Homemade Organically Processed Food Analysis of The Carbon Emission Reduction Effect from No-Tillage in Pepper (Capsicum annuum L.) Cultivation (고추의 무경운 재배에 따른 탄소저감효과 분석)

  • Lee, Gil-Zae;Choi, Yoon-Sil;Yang, Seung-Koo;Lee, Jin-Hong;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.503-518
    • /
    • 2012
  • Korean type of no-tillage cultivation method which was applied on this study used the ridge and the furrow and constantly recycling them as it was suitable for Korea's weather and farming conditions. This no-tillage cultivation was reported to have little negative impact such as reduction of production (Kwon et al., 1997). In addition, it was found to have a lot of benefits as it requires less agro-materials and energy costs as well as shortened working hours because tillage operation is not needed. (Yang et al., 2012). According to an analysis, no-tillage cultivation can reduce greenhouse gas emissions by $344.7kgCO^2$ (58%) in every 10a ($1,000m^2$) compared to ordinary pepper farming technique (Korea averages). Direct-indirect reduction effects from using fertilizer and using less amount of energy were 92% and 44% respectively both of which can be considered very high. Besides the direct effects of no-tillage cultivation, soil management using no-tillage technique raises carbon sequestration effect on soil as time goes on (West & Marland, 2002), that is why the technique is expected to have constant carbon emission reduction effect. For theses reasons, distribution and expansion of Korean type no-tillage cultivation are expected to play a role as major agro-green technologies for achieving our goal of reducing greenhouse gas emissions in agricultural sector.

Effects of Tillage and Cultivation Methods on Carbon Accumulation and Formation of Water-stable Aggregates at Different Soil Layer in Rice Paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shingu;Park, Jeong-Hwa;Hong, Sunha;Kim, Tae-su;Yang, Woonho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.634-643
    • /
    • 2017
  • No-tillage is an effective practice to save labor input and reduce methane emission from the paddy. Effects of tillage and cultivation methods on carbon accumulation and soil properties were investigated in the treatments of tillage-transplanting (T-T), tillage-wet hill seeding (T-WS), minimum tillage-dry seeding (MT-S) and no-tillage dry seeding (NT-S) of rice. Soil carbon was higher in NT-S and MT-S, compared to T-T and T-WS. In NT-S and MT-S, soil carbon contents were the highest in the top soil (5 cm depth) and decreased with soil depth. In T-T and T-WS, however soil carbon contents showed no significant difference up to soil depth of 15 cm from the top. Carbon content was the highest in the soil particle size under $106{\mu}m$ and decreased as the soil particle size increased. Contents of water-stable aggregates in NT-S and MT-S were higher than those of T-T and T-WS. In NT-S and MT-S, contents of water-stable aggregates were the highest in the top soil and significantly decreased with soil depth while no significant difference up to the soil depth of 15 cm in T-T and T-WS. Available $SiO_2$ contents in the top soil were the highest in NT-S and MT-S while the lowest in T-T and T-WS. It is concluded that minimum or no disturbance of soil in rice cultivation can increase carbon accumulation in the soil, especially in the top layer, and subsequently contribute to the formation of the water-stable soil aggregates.

Changes in Methane Emissions from Paddy under Different Tillage and Cultivation Methods (벼 재배 시 경운 및 재배방법에 의한 메탄발생 양상)

  • Kim, Sukjin;Cho, Hyun-Suk;Choi, Jong-Seo;Park, Ki Do;Jang, Jeong-Sook;Kang, Shin-gu;Park, Jeong-Hwa;Kim, Min-Tae;Kang, In-Jeong;Yang, Woonho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.251-256
    • /
    • 2016
  • The increase in carbon stock and sustainability of crop production are the main challenges in agricultural fields relevant to climate change. Methane is the most important greenhouse gas emitted from paddy fields. This study was conducted to investigate the effects of tillage and cultivation methods on methane emissions in rice production in 2014 and 2015. Different combinations of tillage and cultivation were implemented, including conventional tillage-transplanting (T-T), tillage-wet hill seeding (T-W), minimum tillage-dry seeding (MT-D), and no-tillage-dry seeding (NT-D). The amount of methane emitted was the highest in T-T treatment. In MT-D and NT-D treatments, methane emissions were significantly decreased by 77%, compared with that in T-T treatment. Conversely, the soil total carbon (STC) content was higher in MT-D and NT-D plots than in tillage plots. In both years, methane emissions were highly correlated with the dry weight of rice ($R^2=0.62{\sim}0.96$), although the cumulative emissions during the rice growing period was higher in 2014 than in 2015. T-T treatment showed the highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that NT-D practice in rice production could reduce the methane emissions and increase the STC content without loss in grain yield.

Growth and Yield Performance in no-till Cultivation of sugary and shrunken-2 Corn Hybrids

  • Lee, Myoung-Hoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.384-389
    • /
    • 2002
  • No-tillage (NT) practice for corn production has advantages of reduction of soil erosion and energy conservation. Research on effects of NT for sweet corn or super sweet corn is very limited. Hybrids of sugary (su) and shrunken-2 (sh2) were tested under NT and conventional tillage (CT) practices to investigate plant characters, ear characters, fresh yield, and grain yield. Sugary hybrids were Golden Cross Bantam 70 (GCB70), Sprint, Geumdanok, and Danok3. Shrunken-2 hybrids were BSS9472, Cambella90, GSS9299, Jubilee, KS-Y-65, and Chodangok1. Emergence rates under NT were lower than those under CT for su, while there was no difference between tillage systems for sh2. There were no differences between CT and NT for days to tasseling and silking, plant height, and ear height for both su and sh2. Ear characters such as ear length, number of kernel rows, number of kernels per row, and t100-kernel weight under NT were not significantly different from those under CT. There were no differences between two tillage practice for fresh and grain yield, rather they showed trend of increases under NT practices. Results from this trial indicate that NT practice for both su and sh2 cultivation may be possible to recommend to farmers.