• Title/Summary/Keyword: no insulation

Search Result 305, Processing Time 0.022 seconds

A Study on the Basic Characteristics of Persistent Current Mode Operation for Small Scale High Temperature Superconducting Coil with No-insulation Winding Method (No-insulation 기법을 적용한 소용량 고온 초전도 코일의 영구전류 특성에 관한 연구)

  • Lee, T.S.;Lee, W.S.;Choi, S.;Jo, H.C.;Kim, H.J.;Lee, J.;Kang, J.S.;Kwon, O.J.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.23-27
    • /
    • 2012
  • This paper aims to evaluate the feasibility of using no-insulation High Temperature Superconducting (HTS) coil in persistent current mode system. A HTS coil in persistent current mode system usually includes one or more non-superconducting joints in its circuit. And the current decaying rate of the coil is affected by the resistance of joint in persistent current circuit. If the resistance of joint is large, decaying rate of the current drastically increases. Therefore, reducing the joint resistance of the HTS coil is very important in persistent current mode system. In this paper, the no-insulation HTS coil is suggested as a way to reduce the joint resistance with the embedded parallel contact resistance naturally made by no-insulation winding method. Two small coils are fabricated with insulation and no-insulation winding method, and persistent current mode system experiment of each coil is preformed and analyzed.

Comparative Study on the Thermal Insulation of Membrane LNG CCS by Heat Transfer Analysis (열전달 해석을 이용한 멤브레인형 LNG 화물창의 단열구조 성능비교)

  • Hwang, Se-Yun;Lee, Jang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • This study discusses the thermal insulation capacity of variant of NO96 LNG (liquefied natural gas) cargo containment insulation system. Changing the insulation materials and the insulation layers of conventional GTT NO96 containment system, The thermal resistance and BOR(boil off rate) caused by the heat transfer between cryogenic and environmental temperature is discussed. Therefore, thermal analysis of LNG CCS(cargo containment system) is carried out to determine the insulation capabilities. Also, BOR is evaluated in terms of the total amount of heat invaded into CCS(cargo containment system). Variant of NO96 CCS such as NO96, NO96GW and NO96L3 membrane type during laden voyage is selected for the comparative study. Finite element model for heat transfer analysis is conducted by employing the equivalent thermal resistance model to simplify the complex insulation layers. Finally the results for each variant model are relatively compared and discussed to minimize the BOR.

Judgement Criterion of Insulation Deterioration in 4.16kV and 6.6kV Motor Stator Windings (4.16kV 및 6.6kV 전동기 고정자 권선의 절연열화 판정기준)

  • Kim, Hee-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.788-794
    • /
    • 2009
  • To assess the condition of stator insulation, nondestructive tests were performed on twenty five coil groups and twenty six motors. The stator windings has nominal ratings of 6.6kV and are classified into five coil groups ;one group with healthy insulation and four groups with four different types of artificial defects. After completing nondestructive tests, the AC voltage applied to the stator windings was gradually increasing until insulation failure in order to obtain the breakdown voltage. No.1, No.2 and No.6 of 6.6kV motors failed near rated voltage of 14kV, 8.7kV and 14kV, respectively. The breakdown voltage of three motors was lower that expected for good quality coils(14.2kV) in 6.6kV motors. No.3 and No.6 of 4.16kV motors failed near rated voltage of 5.6kV and 4.2kV, respectively. Almost all of failures were located in a line-end coil at the exit from the core slot. The breakdown voltages and the types of defects showed strong relation to the stator insulation tests such as in the case of AC current, dissipation factor(tan${\delta}$) and partial discharge magnitude.

Characteristics of Insulation Aging in Large Generator Stator Windings (대용량 발전기 고정자 권선의 절연열화 특성)

  • Kim, Hee-Dong;Lee, Young-Jun;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1375-1379
    • /
    • 2009
  • Insulation tests have been performed on two generator stator bars under accelerated aging under a laboratory environment. Electrical stress was applied to stator bar No.1, and electrical and thermal stresses were applied to stator bar No.2. Nondestructive stator insulation tests including the ac current, dissipation factor($tan{\delta}$), and partial discharge tests have been performed on both bars as the bars were aged for 11460 hours. Experimental test results show that ${\Delta}I$, ${\Delta}tan{\delta}$, and partial discharge of No. 1 and No.2 stator bars increased with increased in aging time. It has been concluded from the test that the stator insulation of the two generators are in good condition.

A study on charging and electrical stability characteristics with no-insulation and metal insulation in form of racetrack type coils

  • Quach, Huu Luong;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This study presents the experiment and simulation results on the magnetic field response and electrical stability behaviors of no-insulation (NI) and metal insulation with stainless steel tape (MI-SS) which wound in form of racetrack type coils. First of all, the structural design of the racetrack type bobbin was shown along with its parameters. Then, the current-voltage tests were carried out to measure the critical current of both test coils. Also, the sudden discharging and charging tests were performed in the steady state to estimate the decay field time and magnetic field response, respectively. Finally, the overcurrent tests were conducted in the transient state to investigate the electrical stability of these test coils. Based on the experimental results, the contact surface resistances were calculated and applied to the field coils (FCs) of 10-MW-class second generation high temperature superconducting generator (2G HTSG) used in wind offshore environment. The charging delay time and electrical stability for NI and MI-SS HTS FCs of 10-MW-class 2G HTSG are analyzed by the equivalent circuit model and the key parameters which were obtained from the electromagnetic finite element analysis results.

Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System (NO96타입 LNG 방열시스템 Divinycell의 극저온 압축 강도 평가)

  • Choe, Yeong-Rak;Kim, Jeong-Hyeon;Kim, Jong-Min;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.349-355
    • /
    • 2016
  • Divinycell, which functions as both insulation and a supporting structure, is generally applied in the NO96-type liquefied natural gas (LNG) insulation system. Polymer-material-based Divinycell, which has a high strength and low weight, has been widely used in the offshore, transportation, wind power generation, and civil engineering fields. In particular, this type of material receives attention as an insulation material because its thermal conductivity can be lowered depending on the ambient temperature. However, it is difficult to obtain research results for Divinycell, even though the component materials of the NO96-type LNG cargo containment system, such as 36% nickel steel (invar steel), plywood, perlite, and glass wool, have been extensively studied and reported. In the present study, temperature and strain-rate dependent compressive tests on Divinycell were performed. Both the quantitative experimental data and elastic recovery are discussed. Finally, the mechanical characteristics of Divinycell were compared to the results of polyurethane foam insulation material.

Characteristics of Insulation Diagnostic in Traction Motor Stator Windings (견인전동기 고정자 권선의 절연진단 특성)

  • Kim, Hee-Dong;Kim, Chung-Hyo;Park, Young;Park, Hyun-June
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.336-338
    • /
    • 2006
  • Diagnostic tests are used to evaluate the insulation condition of stator windings in traction motor. These tests included ac current, tan delta and maximum partial discharge. The insulation condition of stator windings was assessed by three test items. The stator windings of traction motor were m good condition. After completing the diagnostic tests, the stator windings of traction motors were subjected to gradually increasing ac voltage, until the insulation punctured. No.5 stator windings failed near rated voltage of 18.9 kV. The breakdown voltage of No.1 stator windings was 13.0. The failure was located m a line-end coil at the exit from the core slot.

  • PDF

Analysis of Insulation Condition in Traction Motor Stator Windings (견인전동기 고정자 권선의 절연상태 분석)

  • Kim, Hee-Dong;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.631-635
    • /
    • 2007
  • Diagnostic, surge and ac breakdown tests are widely used to evaluate the insulation condition of stator winding in traction motor. Diagnostic test included ac current, tan delta and maximum partial discharge. The result of diagnostic test indicates that five kinds of stator windings are good condition. Surge test was peformed to confirm the healthy of turn insulation in stator windings. This test is very easy to detect the turn insulation failure between normal and defect stator windings. After completing the diagnostic test, ac breakdown test has conducted gradually increasing ac voltage, until the stator winding punctured. No. 5 stator windings failed near rated voltage of 18.9 kV The breakdown voltage of No. 1 stator windings was 13.0 kV The ac breakdown voltage of normal winding is about 1.45 times higher than that of defect windings. The failure was located in a line-end coil at the exit from the core slot.

A Study on the Long-term Absorption Rate of Organic Insulation Materials (유기질 단열재 장기 흡수율에 관한 연구)

  • Kim, Hae-na;Park, Jun-Seo;Shin, Joung-Hyeon;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.195-196
    • /
    • 2022
  • Insulation material absorption rate is closely related to thermal conductivity. In Korea, there is no study on the change of insulation material in a long-term continuous exposure environment. In this study, basic data on the long-term durability of insulation materials were obtained by measuring the absorption rate of insulation materials over time. For the purpose of providing, as a result of the measurement, PIR class2 No.2 and PIR noncombustible show similar absorption rate trends, which is thought to be due to the fact that both are made of rigid urethane foam, and flame retardant EPS has the highest absorption rate except for PF. This is thought to be because there is a space for absorption between the beads and the beads. In the case of XPS, it is thought that the reason for showing the lowest absorption rate is that because it is produced by extrusion, it has a high density and thus has less space for moisture to penetrate.

  • PDF

Changes in the Thermal Conductivity of Organic Insulators over Time (유기질 단열재 열전도율의 경시 변화)

  • Kim, Hae-Na;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.219-220
    • /
    • 2023
  • The thermal conductivity of the insulation material has a great influence on the heat transmission coefficient, which is currently used for energy evaluation of buildings. The thermal conductivity of insulation changes with changes in the environment, such as humidity and ultraviolet rays, and can be expected to with the passage of time. But there is a lack of data on this, so this study measured the thermal conductivity of organic insulation according to environmental conditions and time, As a result, in the case of XPS, the thermal conductivity value increased over time, which is estimated to be due to the decrease in insulation performance as the foaming gas escapes to the outside, and in the case of PIR class2 No.2 and PIR noncombustible, the increased thermal conductivity value is similar, but in the case of PIR class2 No.2, a relatively moderate increase can be seen, and in the case of PIR noncombustible, a large increase is seen at the beginning, which is judged to be due to the decrease in insulation performance as the internal foaming gas is substituted with air from the outside.

  • PDF