• Title/Summary/Keyword: nitrogen use efficiency

Search Result 300, Processing Time 0.034 seconds

Effect of Different Rates of Ethanol Additive on Fermentation Quality of Napiergrass (Pennisetum purpureum)

  • Zhang, Lei;Yu, C.Q.;Shimojo, M.;Shao, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.636-642
    • /
    • 2011
  • The effect of different rates of ethanol additive on fermentation quality of napiergrass (Pennisetum purpureum) and residual water soluble carbohydrate were studied in the experiment. The addition rate of ethanol was 0%, 1.5%, 2.5%, 3.5%, 4.5% on fresh weight of napiergrass. The laboratory silos were kept in the room, then were opened on 1, 3, 5, 7, 14, 30 days after ensiling and the changes of silage quality were analyzed, respectively. There was a fast and large reduction in pH from the 5th day of ensiling to below 4.2 except for the 4.5% treatment. After five days the pH of silage decreased slowly and the pH of the ethanol additions was lower than the control. Lactic acid content of ethanol treatments increased significantly (p<0.05) from the 5th day of ensiling, reaching the highest value on either the 7th day or 14th day. The ethanol additive inhibited the break down of silage protein and the ammonia nitrogen content of ethanol addition silage was significantly (p<0.05) lower than the control after 30 days of ensiling. Within the initial first day of ensiling the water soluble carbohydrate content declined quickly. The efficiency of water soluble carbohydrate usage was higher in silage with ethanol than in the control. The acetic acid of ethanol treatment was significantly (p<0.05) lower than control on first and 14th day, but there was no significant (p>0.05) difference among the ethanol addition silages. The volatile fatty acids content of silage increased gradually from the first day of ensiling and reached the peak on 14th day or 30th day and the content of ethanol addition treatment was significantly (p<0.05) lower than the control. The experimental results indicated that adding ethanol inhibited the use of protein and water soluble carbohydrate of aerobic bacteria and reduced the silage losses during the early stage of ensiling and thus supplied more fermentation substrate for lactic acid bacteria and improved the fermentation quality of napiergrass.

Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by 15N-urea flux

  • Park, Sang Hyun;Lee, Bok Rye;Jung, Kwang Hwa;Kim, Tae Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.457-466
    • /
    • 2018
  • Objective: The present study aimed to assess the nitrogen (N) use efficiency of acidified pig slurry for regrowth yield and its environmental impacts on perennial ryegrass swards. Methods: The pH of digested pig slurry was adjusted to 5.0 or 7.0 by the addition of sulfuric acid and untreated as a control. The pig slurry urea of each treatment was labeled with $^{15}N$ urea and applied at a rate of 200 kg N/ha immediately after cutting. Soil and herbage samples were collected at 7, 14, and 56 d of regrowth. The flux of pig slurry-N to regrowth yield and soil N mineralization were analyzed, and N losses via $NH_3$, $N_2O$ emission and $NO_3{^-}$ leaching were also estimated. Results: The pH level of the applied slurry did not have a significant effect on herbage yield or N content of herbage at the end of regrowth, whereas the amount of N derived from pig slurry urea (NdfSU) was higher in both herbage and soils in pH-controlled plots. The $NH_4{^+}-N$ content and the amount of N derived from slurry urea into soil $NH_4{^+}$ fraction ($NdfSU-NH_4{^+}$) was significantly higher in in the pH 5 plot, whereas $NO_3{^-}$ and $NdfSU-NO_3{^-}$ were lower than in control plots over the entire regrowth period. Nitrification of $NH_4{^+}-N$ was delayed in soil amended with acidified slurry. Compared to non-pH-controlled pig slurry (i.e. control plots), application of acidified slurry reduced $NH_3$ emissions by 78.1%, $N_2O$ emissions by 78.9% and $NO_3{^-}$ leaching by 17.81% over the course of the experiment. Conclusion: Our results suggest that pig slurry acidification may represent an effective means of minimizing hazardous environmental impacts without depressing regrowth yield.

Various levels of copra meal supplementation with β-Mannanase on growth performance, blood profile, nutrient digestibility, pork quality and economical analysis in growing-finishing pigs

  • Kim, H.J.;Nam, S.O.;Jeong, J.H.;Fang, L.H.;Yoo, H.B.;Yoo, S.H.;Hong, J.S.;Son, S.W.;Ha, S.H.;Kim, Y.Y.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.7
    • /
    • pp.19.1-19.10
    • /
    • 2017
  • Background: To reduce use of main feed ingredient like corn, soy bean meal (SBM) and wheat, alternative ingredients has been studied like copra meal (CM). Production amount of CM which has been high makes CM to be an alternative feed stuff. However, low digestibility on AA and low energy content by high fiber content can be an obstacle for using CM. This experiment was conducted to evaluate the effects of CM supplementation with ${\beta}$-mannanase on growth performance, blood profile, nutrient digestibility, pork quality and economic analysis in growing-finishing pigs. Methods: A total of 100 growing pigs ([Yorkshire ${\times}$ Landrace] ${\times}$ Duroc) averaging $31.22{\pm}2.04kg$ body weight were allotted to 5 different treatments by weight and sex in a randomized complete block (RCB) design in 5 replicate with 4 pigs per pen. Treatments were 1) Control (corn-SBM based diet + 0.1% of ${\beta}$-mannanase (800 IU)), 2) CM10 (10% copra meal + 0.1% ${\beta}$-mannanase (800 IU)), 3) CM15 (15% copra meal + 0.1% ${\beta}$-mannanase (800 IU)), 4) CM20 (20% copra meal + 0.1% ${\beta}$-mannanase (800 IU)) and 5) CM25 (25% copra meal + 0.1% ${\beta}$-mannanase (800 IU)). Four phase feeding program was used: growing I (week 1-3), growing II (week 4-6), finishing I (week 7-9) and finishing II (week 10-12). Results: In growth performance, there was no significant difference among treatments during whole experimental period. In growingI phase, G:F ratio tended to increase when CM was increased (P = 0.05), but ADG and ADFI tended to decrease in finishingII phase (linear, P = 0.08). Also, increasing CM reduced ADG (linear, P = 0.02) and feed efficiency (linear, P = 0.08) during the whole finishing period. In blood profiles, BUN was linearly increased as CM increased (linear, P = 0.02) at growingII period. In digestibility trial, there was no significant difference in dry matter, crude fat, crude ash and nitrogen digestibility. However, crude protein digestibility was decreased linearly (linear, P = 0.02). In economic analysis, feed cost per weight gain and total feed cost per pig were reduced in overall period when CM was provided by 25% (linear, P = 0.02). Conclusion: CM with 0.1% of ${\beta}$-mannanase (800 IU) could be supplemented instead of corn and SBM up to 25% without detrimental effects on growth performance and pork quality of growing-finishing pigs.

Photosynthetic Rates of 'Campbell Early' Organic Grape as Affected by Degree of Leaf Spot Disease Caused by Pseudocercospora vitis (포도갈색무늬병 발병수준이 '켐벨얼리' 유기포도의 광합성률에 미치는 영향)

  • Ryu, Young-Hyun;Bae, Su-Gon;Yeon, Il-Kwon;Kim, Kwang-Sup;Park, Sang-Jo;Park, Jun-Hong;Park, Jong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.773-786
    • /
    • 2016
  • Grape cultivar "Campbell Early" account for 70% of table grape in Korea and Leaf Spot Disease caused by Pseudocercospora vitis is one of a major disease in greenhouse and field grown area during late summer season in both of organic and conventional grape farm. Leaf spot disease can cause lowing of sugar content in fruit and vine growth and very difficult to control especially in organic field. Photosynthesis ability and chemical components are compared between leaf spot disease infected leaves with degree of necrotic area. With increase of disease necrotic area, $CO_2$ differential value, water use efficiency and $CO_2$ assimilation and respiration ratio are decreased proportionally and on the other hand, stomatal conductance value is not affected by disease necrotic area. Chlorophyll contents are also decreased by 50% in heavily infected leaves and imply decrease of chlorophyll contents is a major source of photosynthesis ability decline. With increase of disease necrotic area in leaves, total nitrogen and phosphate contents are decreased and on the other side, total carbon, potassium, calcium and magnesium contents are increased. From this research, we can infer that not only chemical control program is important in control of leaf spot disease but also fertilizing program is significant especially in organic agronomical control of fungal disease in grape cultivar "Campbell Early".

Concrete Release agent using Low Cost High Performance Photocatalyst Materials (저비용 고성능 광촉매를 활용한 콘크리트 이형박리제 개발)

  • Park, Jong-Pil;Hwang, Byoung-Il;Yoo, Byung-Hyun;Lee, Dong-gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.610-616
    • /
    • 2020
  • Recently, the application of a photocatalyst to road structures is being attempted to solve environmental problems caused by fine particulate matter and automobile exhaust. The purpose of this study was to develop a release agent with GST (low-cost, high-performance photocatalyst produced from wastewater sludge). For this, the method of mixing and dispersing GST with the release agent was used first, and the removal performance of nitrogen oxide (NOx) was then checked. The best performance without a precipitation reaction was achieved using a stabilizing agent at 20 % in an outdoor exposure test for four weeks. The NO and NOx removal rate of the specimen demolded by applying the GST release agent developed in this study showed excellent effects of 200 to 400 % compared to the Plain material. To increase the performance of the GST release agent, it is necessary to improve the dispersibility of GST in the release agent and increase the amount of the nano-sized photocatalyst. In addition, the use of GST release agent in road structures and exposed concrete is expected to increase the NOx removal efficiency.

Effects of Subsurface Drip Irrigation and Aeration in Green Pepper Cultivation (시설풋고추 재배에서의 지중관수 및 공기주입 효과)

  • Kwon, Joon-Kook;Kang, Nam-Jun;Cho, Myeomg-Whan;Kang, Yun-Im;Park, Kyoung-Sub;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.225-231
    • /
    • 2009
  • 'Nokkwang' green pepper plants were grown in soil system (silty loam with pH 6.5) under the greenhouse, to determine the effects of subsurface drip irrigation (SDI) and subsurface drip irrigation plus aeration (SDIA) into root zone comparing with conventional surface drip irrigation (DI) in terms of water use efficiency, soil properties, and growth and fruit yield. Two drip lines per crop row were layed on the soil surface in DI system, buried at a depth of 20cm below the soil surface in SDI system, and also buried at a depth of20cm below the soil surface and aerated for 3minutes a hour during the daytime ($08:00{\sim}19:00$) by a air compressor in SDIA system. A automatic irrigation with starting point of -20kPa and ending point of -10kPa based on soil moisture contents was applied by controllers and electronic vacum soil moisture sensors. Reduction in soil moisture contents was delayed in SDI and SDIA, compared to DI. Irrigation amount applied in pepper cultivation was around 30% less in SDI than in DI. Electric conductivity and nitrate nitrogen content in the surface soil grown green pepper were significantly lowered in SSDI and SDIA, compared to DI. Better development of root system was observed in SDIA and SDI than in DI. Results showed that pepper fruit yield increased by 30% in SDIA and 22% in SDI in comparision with DI.

Thermal analysis of LNG storage tank for LNG bunkering system (LNG 벙커링용 고효율 LNG 저장탱크 열해석)

  • Yun, Sang-kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.876-880
    • /
    • 2015
  • In 2016, the IMO's new rules for an 80% reduction in NOx emissions in newly built ships will necessitate the use of LNG as a clean fuel. So far, the developed European countries have led the development of LNG bunkering ships and related facilities. An LNG bunkering system stores LNG in a horizontal or vertical IMO "C"-Type tank insulated with perlite powder, and a vacuum in the annular space between the double walls, like the cryogenic liquid nitrogen tank. Current storage tanks have high heat leakage, evaporating over 2.0% daily, and are difficult to build with the required vacuum. A more efficiently insulated storage tank could reduce the evaporation rate. This research carried out thermal analysis on a new effective insulation method that separates high vacuum in the annular space between two tanks with a solid insulation material, such as urethane foam, lining the outer vessel. This highly efficient insulation system obtained an evaporation rate of 0.03% per day under a $10^{-3}torr$ vacuum, and an evaporation rate of 0.11% at $10^{-45}torr$. Even if the space loses its vacuum, the new insulation system showed a lower evaporation rate of 4.12% than the present perlite system of 4.9%. This newly developed tank can increase the efficiency of LNG storage tank and may help keep LNG bunkering systems safe.

Effect of Fertilizer Application Level considering Irrigation Water Quality on Rice (Oryza sativa L.) Productivity and Agricultural Environment (관개수질을 고려한 시비가 벼의 생산성과 농업환경에 미치는 영향)

  • Uhm, Mi-Jeong;Park, Hyun-Cheol;Kim, Kab-Cheol;Ryu, Jeong;Choi, Joung-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2004
  • This study was conducted to investigate the effect on agricultural environment and crop productivity by different amount of applied fertilizer in consideration of irrigation water quality. N, P and K contents of irrigation water used in this experiment were 6.16, 0.26 and 9.37 mg/L, respectively. N, P and K Concentrations of runoff water were lower than those of inflow water during rice cultivation. N, P and K Concentrations of ponded and percolated water were changed according to the amount and time of applied fertilization. During rice cultivation in paddy soil, nitrogen balance was closed to 0 in SFT 50% (50% level of soil testing fertilization), 0.14 kg/ha, but it was 95.3 kg/ha in CF (conventional fertilization) treatment In SW 50% and STF (soil testing fertilization) treatment yield of perfect rice was not greatly different as compared with CF treatment due to the superiority of ripening rate, 1,000 grains weight and milling characteristics. Mechanical paratability of rice was excellent in NF (non fertilization) treatment, STF 50% treatment showed higher in nutrient availability and fertilizers use efficiency than other treatments.

The Amount of Macro and Micro Elements Absorbed During Soil Cultivation of Cut-flower Roses (Rosa hybrida L.) (절화장미 토양재배시 미량 및 다량 원소의 양분 흡수량)

  • Lee, In-Bog;Lim, Jae-Hyun;Choi, Yong-Mun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.358-364
    • /
    • 2001
  • To obtain information for the proper fertilization management of cut-flower roses, the amount of macro and micro elements absorbed by cut-flower roses from soil for a year was investigated. Three cut-flower rose cultivars which are called 'Grandgara', 'Nobless', and 'Centina' were transplanted to a sandy loam soil, N-P-K standard fertilization was applied to the soil, and drip irrigation was done at the level of 10 kPa soil moisture tension. There was not significantly different in the harvest amount of cut-flower rose between 'Grandgara' and 'Nobless', but the harvest yield of 'Centina' was about 63% level when compared to that of 'Grandgara'. Considering seasonal changes in the content of nutrients in plant, parts, the uptake of untrients was higher in winter season than that in spring and summer seasons. Except for 'Centina', the nutrient amount removed from plant parts of 'Grandgara' and 'Nobless' increased with the sequence of floral part < stem < leaf, indicating that it is more dependent on biomass yield than on the content of nutrients in each plant part. The ratio of N/K amount absorbed by 'Nobless' and 'Centina' was 1.13 and 1.28. respectively, lower than 1.68 of 'Grandgara', showing that the requirement for K is greater in 'Nobless' and 'Centina' than in 'Grandgara'. The use efficiency of nutrients by cut-flower roses ranged from 39 to 64% in nitrogen, 5 to 9% in phosphorus, and 37 to 67% in potassium. It suggests that the requirement for P in cut-flower roses is very low.

  • PDF

Optimum N Fertilization at Panicle Initiation Stage on Ridge Direct Seeding on Dry Paddy of Rice as an Irrigation Water-Saving Cultural System (벼 휴립건답직파 절수재배에 알맞은 질소 수비량)

  • 최원영;박홍규;이기상;김상수;이재길;김순철;최선영
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.177-184
    • /
    • 2001
  • This study was conducted to identify the optimum nitrogen (N) fertilization at panicle initiation stage on ridge direct seeding on dry paddy of rice. During 1999~2000, a series of experiments was carried out at field (Chonbuk series) of the National Honam Agricultural Experiment Station, RDA using Dongjinbyeo. Plants were taller, and leaf area index and top dry weight increased with more N fertilization at panicle initiation stage. Photosynthetic rate of heading stage was higher at higher amounts of N fertilization at panicle initiation stage, especially in 6 kg/10a compared with 10 kg/10a seeding rate. Lodging index and its related traits did not significantly differ under different rates of N fertilization at panicle initiation stage. N uptake of the rice plant increased as more N fertilization at panicle initiation stage. N use efficiency was highest under the standard topdressing rate at 6 kg/10a seeding rate. Panicle number per m$^2$ increased with more topdressed N, but ripened grain rate and 1,000-grain weight of brown rice did not differ with an increase in topdressed N. Milled rice yield was 6% higher in the 6 kg/10a seeding rate and 13% higher in the 10 kg/10a seeding rate at 50% more topdressed N compared with 4.8 kg/10a N fertilization at panicle initiation stage of 6 kg/10a seeding rate.

  • PDF