• Title/Summary/Keyword: nitrogen use efficiency

Search Result 300, Processing Time 0.044 seconds

The Effects of Organic Materials on Yield and N Use Efficiency of Organic Rice Grown under Frequent Heavy Rains (잦은 강우 조건에서 유기질자재에 따른 유기재배 벼의 수량과 질소이용효율)

  • Cho, Jung-Lai;Lee, Youn;Choi, Hyun-Sug;Kim, Wol-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate growth and yield of organically grown rice under a typhoon during a fall. The treatments included NPK chemical fertilizer, compost, oilcake, oilcake 2X, hairyvetch, and vetch+rye. METHODS AND RESULTS: Nutrient applications were made at rates equivalent to approximately 0.9 kg of actual N per acre. Oilcake and hairyvetch treatments had the lowest C:N ratio, but compost had the highest C:N ratio of 34:1. Rice treated by organic nutrient sources had great growth and development at the beginning of the growing season but had depressed growth and yield at the harvest. Oilcake 2X-treated rice in early growing season, especially, showed better growth and development than rice treated by other nutrient sources but was severely lodged at the harvest season due to the typhoon. Compost treatment with high C:N ratio slowly released inorganic N and produced poor rice growth and yield; however, it recued rice lodging. N uptake was the greatest for the oilcake 2X and vetch+rye treatments but the lowest for the compost, which was the similar pattern to the N use efficiency; the greatest and lowest N use efficiency was observed for the oilcake 2X (55%) and compost (5%), respectively. CONCLUSION(s): Rice lodging should be prevented by reducing the excessive nitrogen supplement, resulting from the lower C:N ratio of the organic materials as well as prevented by the radical midsummer drainage. Vetch+rye treatment with 25:1 of C:N had optimum vegetative growth and reduced rice lodging, which increased N use efficiency and yield.

Nitrogen Leaching and Balance of Soils Grown with Cabbage in Weighing Lysimeter (중량식 라이시미터에서 배추 재배에 따른 질소 용탈과 수지)

  • Lee, Ye Jin;Ok, Jung Hun;Lee, Seul Bi;Sung, Jwa Kyung;Song, Yo Sung;Lee, Deog Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.166-171
    • /
    • 2018
  • BACKGROUND: Nitrogen leaching depends on the drainage pattern and nitrate content, and those are influenced by soil hydraulic properties and fertility. The purpose of this study was to confirm how soil texture contributed to leaching and balance of nitrogen, as well as to drainage. METHODS AND RESULTS: This study was performed using undisturbed weighing lysimeters which were piled up with clay loam (Songjung series) and sandy loam (Sanju series) soils in National Institute of Agricultural Science experimental field. Chinese cabbage was cultivated from August 30 to October 31, 2017. The application rates of N, $P_2O_5$, and $K_2O$ were 21.5, 7.8, and $15.0kg\;10a^{-1}$, respectively, and irrigation was supplied at -33 kPa in 30 cm soil depth. Drainage in clay loam was not noticeable, although it was increased by rainfall in early September. By contrast, the trend of drainage in sandy loam was strongly dependent upon rainfall pattern. Owing to different drainage patterns between both soil textures, nitrogen leaching was 5-fold higher in sandy loam than in clay loam. Nitrogen use efficiencies in clay loam and sandy loam were represented as 43% and 52%, respectively. CONCLUSION: The pattern of drainage and nitrogen leaching were greatly depended on clay content in soil. From this study, we carefully suggest that soil texture should be considered as an incidental factor to estimate nitrogen balance.

Effect of Nitrogen Fertigation on The Growth and Nutrition Uptake of 'Brightwell' Rabbiteye Blueberry (질소관비 수준이 래빗아이 블루베리 '브라이트웰'의 생장과 양분흡수에 미치는 영향)

  • Kwack, Yong-Bum;Chae, Won-Byoung;Lee, Mock-hee;Jeong, Hae-Won;Rhee, Han-Cheol;Kim, Jin-Gook;Kim, Hong-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.161-168
    • /
    • 2017
  • BACKGROUND: Rabbiteye blueberry(Vaccinium ashei Reade) has low nutrient uptake efficiency due to its shallow and fibrous root system without root hairs. This study was carried out to establish an efficient nutrient application standard by investigating the effect of nitrogen fertigation on the growth and fruit characteristics of rabbiteye blueberry. METHODS AND RESULTS: 'Brightwell' rabbiteye blueberry was treated with 0, 50, 100 and 200% nitrogen fertigation of recommended fertilizer application (6, 9 and 14 g/bush in the first, second and third years, respectively). The results showed that leaf nitrogen content significantly correlated with the fruit weight and fruit yield. However, canopy area, dry weight, sugar and anthocyanin contents did not correlate significantly with the leaf nitrogen content. The leaf and stem dry weights of 'Brightwell' rabbiteye blueberry during the third year of planting were the highest with 50% nitrogen fertigation (leaf dry weight=723.7 g/bush; stem dry weight=890.7 g/bush). Maximum fruit yield of 'Brightwell' rabbiteye blueberry (12.9 kg/bush) was observed during the third year of planting with 50% nitrogen fertigation and this was about 70% greater than the treatment that received no nitrogen fertigation. The fruit yields of 'Brightwell' rabbiteye blueberry during the third year of planting treated with 100 and 200% nitrogen fertigation were 11.0 and 11.5 kg/bush, and these were 17 and 12%lower than the 50% nitrogen fertigation treatment, respectively. Further, the efficiency of nitrogen utilization was the highest (90%) with 50% nitrogen fertigation and lowest (18%) with 200% nitrogen fertigation. CONCLUSION: The results of this study suggests that fertigation with 50% of the recommended fertilizer could be most effective for enhancing the growth and nitrogen use efficiency of rabbiteye blueberry.

Bio-fermentation Technology to Improve Efficiency of Swine Nutrition

  • Kim, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • The United Nations Convention on Biological Diversity defines biotechnology as "Any technological application that uses biological systems, dead organisms, or derivatives thereof, to make or modify products or processes for specific use" Biotechnology has made tremendous contributions to improve production efficiency of agriculture during the last century. This article reviews successful examples of application of bio-fermentation in improving swine nutrition efficiency mainly based on the authors'z own research experience. Production of feed grade supplemental amino acids by bio-fermentation allowed nutritionists to formulate accurate feed for optimal lean growth and reduced nitrogen excretion. Recent issues with high feed grain prices caused potential feed quality problems. Bio-fermentation allowed nutritionists to use exogenous supplemental enzymes such as phytase and NSPases in swine diets, thereby improving nutrient utilization and reducing nutrient excretion to the environment. Yeast metabolites are also produced by bio-fermentation and have been repeatedly shown to improve milk production of sows during early lactation even though actual mechanisms are still to be investigated. Bio-fermentation technology also allowed nutritionists to prepare vegetable protein sources with large protein molecules and anti-nutritional factors suitable for feeding newly weaned piglets, as selected microorganisms significantly reduce specific anti-nutritional factors and size of peptides. Preparations of vegetable protein sources suitable for newly weaned pigs will greatly contribute to swine nutrition by providing efficient alternatives to the use of animal protein sources that are often expensive and somewhat against societal preference. Considering the few examples listed above, biotechnology has closely influenced improvement of production efficiency in the swine industry. As we have limited resources to produce meat to satisfy ever-increasing global demands, extensive adaptation of biotechnology to enhance production efficiency should be continued. However, at the same time, wise and careful application of bio-technology should be considered to ensure production of safe food and to meet the expectations of our society.

Efficiency of Vitrification using Conventional Straw and Grid as a Vihicle in Mouse Oocytes (마우스 성숙난자의 Straw와 Grid를 이용한 유리화동결법의 효율성 검토)

  • 정형민;박이석;박성은
    • Journal of Embryo Transfer
    • /
    • v.16 no.3
    • /
    • pp.233-237
    • /
    • 2001
  • To develop an effective vitrification method, we examined the use of a conventional straw as vessel fur vitrification of mouse oocytes, and to compare the post-thaw survival and chromosome configuration of these oocytes with those vitrified in grids. Intact cumulus-enclosed oocytes were vitrified with DPBS with 5.5 M ethylene glycol and 1.0 M sucrose, and loaded into straws and onto eletron microscopic copper grid fur storing in liquid nitrogen. Intact vitrified and thawed oocytes were karyotying for chromosome. The rates of post-thawed survival were 88.5% in vitrified oocytes with straws, and 83% in vitrified ooctyes with grids. Vitrified and thawed oocytes with straws and grids were increased chromosomal abnormality (31.4% and 30.9%) compared with fresh oocytes (17.8%). The conventional straws can be used as vessel for vitrification to prevent of inflection in liquid nitrogen.

  • PDF

Growth Simulation of Ilpumbyeo under Korean Environment Using ORYZA2000: III. Validation of Growth Simulation

  • Lee Chung-Kuen;Shin Jae-Hoon;Shin Jin-Chul;Kim Duk-Su;Choi Kyung-Jin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.104-105
    • /
    • 2004
  • [ $\bigcirc$ ] In the phenology model of ORYZA2000, the effect of photoperiod on the developmental rate was a little ignored because most crop parameters were measured with IRRI varieties which are insensitive to photoperiod, therefore it is very difficult to apply this phenology model directly to Korean varieties which are usually sensitive to photoperiod. $\bigcirc$ After introducing PPFAC and PPSE to improve the phenology model, the precision of heading date prediction was improved but not satisfied. $\bigcirc$ In the growth simulation using data from several regions, yield tended to be overestimated under high nitrogen applicated condition. $\bigcirc$ The precision of yield was much improved by introducing nitrogen use efficiency, but still different between regions because of different soil fertility or property of irrigation water between regions

  • PDF

Effect of Band Spotty Fertilization on Yields and Nutrient Utilization of Garlic(Allium sativum L.) in Plastic Film Mulching Cultivation (마늘 재배시 양분이용율 및 수량에 미치는 국소시비 효과)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Shin, Bok-woo;Kim, Jae-Duk;Kang, Seung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.380-385
    • /
    • 2006
  • To establish law-put fertilization technique and increase of fertilization efficiency during cultivation of vinyl mulching for plant, the improvement of soil properties, nutrition efficiency and yields by band spotty fertilization(BSF) using band spotty applicator was carried out at garlic(Alltuiti sativum L.) field in Honam Agricultural Research Institute from 2001 to 2002 for 2 years. The value of pH and the content of total nitrogen, organic matter, exchangeable potassium and calcium of soil after experiment were increased but the content of available phosphate was decreased than soil before experiment. Uptake amounts of nitrogen fertilized by plants were more than in BSF plots($89{\sim}111kg\;ha^{-1}$) compared to in CF(conventional fertilization) Plot ($76kg\;ha^{-1}$) and nitrogen use efficiency were high in BSF plots(42.9~58.2%) compared to in CF plot(34.9%). Also Uptake amounts of potassium fertilized by plants were more than in BSF plots($34{\sim}58kg\;ha^{-1}$) compared to in CF plot($33kg\;ha^{-1}$) and potassium use efficiency were high in BSF plots(21.6~41.2%) compared to in CF plot(19.4%). Residual amount of nitrogen fertilized on soil were more than in BSF plots($38{\sim}54kg\;ha^{-1}$) compared to in CF plot($22kg\;ha^{-1}$) while loss amount of nitrogen fertilized on soil were less than in BSF plots($32{\sim}53kg\;ha^{-1}$) compared to in CF plot($120kg\;ha^{-1}$). Also Residual amount of potassium fertilized on soil were more than in 100% BSF plot($109kg\;ha^{-1}$) compared to in CF plot($72kg\;ha^{-1}$) while loss amount of nitrogen fertilized on soil were less than in BSF plots($14{\sim}38kg\;ha^{-1}$) compared to in CF plot($113kg\;ha^{-1}$). The BSF plots were increased plant height, leaf number, leaf sheath diameter, bulb diameter and height compared to CF plot. The total yields of garlic were more increased 14~19% because of high large bulb rate, commercial yields in 70, 100% BSF plots compared to in CF plot($102.9Mg\;ha^{-1}$). It was found that 70% band spotty fertilization was more effective as fertilization method to reduce both environmental pollution and chemical nitrogen fertilizer in plastic film mulching cultivation.

Effect of Fertilizer Deep Placement on Rice and Soybean Yield Using Newly Developed Device for Deep Fertilization (신개발 심층시비장치를 이용한 심층시비가 벼와 콩 수량에 미치는 영향)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • Nitrogen fertilizer is an essential macronutrient that requires repeated input for crop cultivation. Excessive use of nitrogen fertilizers can adversely affect the environment by discharging NH3, NO, and N2O into the air and leaching into surrounding water systems through rainfall runoff. Therefore, it is necessary to develop a technology that reduces the amount of nitrogen fertilizer used without compromising crop yields. Fertilizer deep placement could be a technology employed to increase the efficiency of nitrogen fertilizer use. In this study, a deep fertilization device that can be coupled to a tractor and used to inject fertilizer into the soil was developed. The deep fertilization device consisted of a tractor attachment part, fertilizer amount control and supply part, and an underground fertilizer input part. The fertilization depth was designed to be adjustable from the soil surface down to a depth of 40 cm in the soil. This device injected fertilizer at a speed of 2,000 m2/hr to a depth of 25 to 30 cm through an underground fertilizer injection pipe while being attached to and towed by a 62-horsepower agricultural tractor. Furthermore, it had no difficulty in employing various fertilizers currently utilized in agricultural fields, and it operated well. It could also perform fertilization and plowing work, thereby further simplifying agricultural labor. In this study, a newly developed device was used to investigate the effects of deep fertilizer placement (FDP) compared to those with urea surface broadcasting, in terms of rice and soybean grain yields. FDP increased the number of rice grains, resulting in an average improvement of 9% in rice yields across three regions. It also increased the number of soybean pods, resulting in an average increase of 23% in soybean yields across the three regions. The results of this study suggest that the newly developed deep fertilization device can efficiently and rapidly inject fertilizer into the soil at depths of 25 to 30 cm. This fertilizer deep placement strategy will be an effective fertilizer application method used to increase rice and soybean yields, in addition to reducing nitrogen fertilizer use, under conventional rice and soybean cultivation conditions.