• Title/Summary/Keyword: nitrogen ion implantation

Search Result 68, Processing Time 0.021 seconds

The Properties of Nitrogen Implanted Tungsten Diffusion Barrier for Cu Metallization

  • Kim, D.J.;Kim, D.J.;Kim, Y.T.;Lee, J.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.79-82
    • /
    • 1995
  • $N^+$ beam modified diffusion barriers have been proposed for Cu metallization . The crystalline phases of W and Ti thin films change from polycrytalline to amorphous phase by the N ion implantation of 1~$3\times 10^{17}$atoms/$\textrm{cm}^2$. The comparison between these amorphized diffusion barriers and the conventional W and TiN films shows that the amorphized W and Ti diffusion barriers are superior to the conventional w and TiN for protecting the Cu diffusion barriers are superior to the conventional W and TiN for protecting the Cu diffusion at the annealing temperature range $600^{\circ}C$~$800^{\circ}C$ for 30min. This is a worldwidely new and excellent result on the high temperature thermal stability of diffusion barrier.

  • PDF

A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear (C-N코팅 스퍼기어의 마찰 . 마모 특성에 관한 연구)

  • 노룡;류성기
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.272-277
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficient of C-N coating and TiN coating decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed a more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about 500$^{\circ}C$, results in a tempering of base material that causes microstructural change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear (C-N 코팅 스퍼기어의 마찰${\cdot}$마모 특성에 관한 연구)

  • Lu Long;Lyu Sung-ki
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficients of C-N coating and TiN coaling decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about $500^{\circ}C$ results in a tempering of base material that causes microstructure change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

  • PDF

Characteristics of Refractive Index Profiles at Different Temperatures in $LiNbO_3$ and $KTiOPO_4$ Waveguide Formed by 350 keV Light Ions

  • Wang, Ke-Ming;Feng Chen;Hui Hu;Xia, Hui-Hao;Wang, Xue-Lin;Shi, Bo-Rong;Lu, Qing-Ming
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.28-32
    • /
    • 2003
  • Both $LiNbO_3$ and $KTiOPO_4$ samples were implanted with 350 keY $H^+$ and $He^+$ ions at different doses ranging from $1 ${\times}$\times10^{16}$ to of $5 ${\times}$\times10^{16}$ ions/$\textrm{cm}^2$. Single and multi-energy implantations were performed at room temperature. Mono-mode or a few modes in both $LiNbO_3$ and $KTiOPO_4$ waveguides were observed. The effect of temperature on the refractive index profiles of $LiNbO_3$ and $KTiOPO_4$ waveguids was studied. The temperature covered from room temperature, $200^{\circ}C$, 194.5 K (dry ice) and 77K (liquid nitrogen). Different mechanisms are needed to interpret the observed behavior. A n, increased mono-mode $LiNbO_3$ waveguide was formed by multi-energy keV $He^+$ ions.

Modulation of Defect States in Co- and Fe-implanted Silicon by Rapid Thermal Annealing

  • Lee, Dong-Uk;Lee, Kyoung-Su;Pak, Sang-Woo;Suh, Joo-Young;Kim, Eun-Kyu;Lee, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.314-314
    • /
    • 2012
  • The dilute magnetic semiconductors (DMS) have been developed to multi-functional electro-magnetic devices. Specially, the Si based DMS formed by ion implantation have strong advantages to improve magnetic properties because of the controllable effects of carrier concentration on ferromagnetism. In this study, we investigated the deep level states of Fe- and Co-ions implanted Si wafer during rapid thermal annealing (RTA) process. The p-type Si (100) wafers with hole concentration of $1{\times}10^{16}cm^{-3}$ were uniformly implanted by Fe and Co ions at a dose of $1{\times}10^{16}cm^{-2}$ with an energy of 60 keV. After RTA process at temperature ranges of $500{\sim}900^{\circ}C$ for 5 min in nitrogen ambient, the Au electrodes with thickness of 100 nm were deposited to fabricate a Schottky contact by thermal evaporator. The surface morphology, the crystal structure, and the defect state for Fe- and Co- ion implanted p-type Si wafers were investigated by an atomic force microscopy, a x-ray diffraction, and a deep level transient spectroscopy, respectively. Finally, we will discuss the physical relationship between the electrical properties and the variation of defect states for Fe- and Co-ions implanted Si wafer after RTA.

  • PDF

Surface Characteristics and Electrochemical Behaviors of TiN and ZrN Coated Orthodontic Mini-screw (ZrN 및 TiN 코팅된 치과교정 용 미니나사의 표면특성과 전기화학적 거동)

  • Kim, S.J.;Moon, Y.P.;Park, G.H.;Jo, H.H.;Kim, W.G.;Son, M.K.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.232-239
    • /
    • 2008
  • The dental orthodontic mini-screw requires good mechanical properties and high corrosion resistance for implantation in the bone. The purpose of this study was to investigate the electrochemical characteristics of TiN and ZrN coated orthodontic mini-screws, mini-screws were used for experiment. Ion plating was carried out for mini-screw using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen w as o bserved with f ield emission scanning e lectron microscopy ( FE-SEM), e nergy dispersive x-ray spectroscopy (EDX), and electrochemical tester. The surface of TiN and ZrN coated mini-screw were more smooth than that of other kinds of non-coated mini-screw due to dercrease of machined defects. The corrosion current density of the TiN and ZrN coated mini-screw decreased compared to non-coated sample. The corrosion potential of TiN and ZrN coated mini-screw were higher than that of non-coated mini-screw in 0.9% NaCl solution. The pitting corrosion resistance increased in the order of ZrN coated, TiN coated and non-coated wire. Pitting potential of ZrN coated mini-screw was the highest in the other specimens.

Improvement of 4H-SiC surface morphology using r-GO as a capping layer (환원된 그래핀 산화물을 보호 층으로 적용한 4H-SiC 표면 거칠기 향상 연구)

  • Sung, Min-Je;Kim, Seongjun;Kim, Hong-Ki;Kang, Min-Jae;Lee, Nam-suk;Shin, Hoon-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1226-1229
    • /
    • 2018
  • We investigated the improvement of surface roughness and states after high temperature annealing using reduced-graphene oxide (r-GO) capping layer on ion-implanted 4H-SiC epitaxial layer. The specification of the 4H-SiC wafer grown on n-type $4^{\circ}$ off-axis 4H-SiC was $10{\mu}m$-thick and n-type epitaxial layer with a dose of $1.73{\times}10^{15}cm^{-2}$. The $n^+$ region were formed by multiple nitrogen ion-implantations and r-GO capping layer was produced by spray coating method. AFM measurements revealed that RMS value of the sample capped with r-GO was tenfold decrease compared to the sample without r-GO capping. The improvement of surface states was also verified by the improvement of leakage current level.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF