• Title/Summary/Keyword: nitrogen gas

Search Result 2,029, Processing Time 0.028 seconds

A Study on NOx Emission Characteristics of An Industrial Gas Turbine (산업용 가스터빈의 NOx 배출 특성에 관한 연구)

  • Jeong, Jai-Mo;Park, Jung-Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2004
  • The purposes of this study are to analyze nitrogen oxides(NOx) formation mechanism and to reduce abnormal NOx emissions in gas turbines. Industrial gas turbines emissions have potential to negative affect to the atmosphere in many different ways such as photochemical smog, acid rain and global warming. In conventional gas turbine combustors, one of the main pollutants such as nitrogen oxide(NOx) species, are principally formed from combustion process of fuel with oxygen in the primary combustion zone, and their emission levels are highly depend on peak temperatures in the combustor. In order to examine the characteristics and the effect of NOx formation, we used gas turbine of which commercial operating in Korea. From the examination, it has been found that NOx emissions are relatively high at low load(output) and during combustion mode change. Also, the effect of Air/Fuel ratio was considered. As the Air/Fuel ratio was increased in Lean-Lean mode, the NOx emission was decreased. The results of this study indicated that NOx emission levels are highly depend on peak temperature and pressure of combustion process in the combustor.

  • PDF

Study of Counter Diffusion in Isostatic Permeameters

  • Bianchi, F.;Pegoraro, M.;Zanderighi, L.
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • The counter-diffusion of two gaseous substances permeating a polymeric membrane has been investigated both experimentally and theoretically. The aim of the study was to find mutual effects, if any, that could influence the permeability and diffusivity data. The experimental data were obtained with an isostatic permeameter operating at ambient pressure and 303 K: helium, nitrogen, carbon dioxide methane were used as permeating gas at different partial pressure; helium or nitrogen as equilibrating or carrier gas. No evident mutual effect of the counter-diffusing gas was observed. The theoretical analysis gave some insight into the phenomena and it was concluded that at near-atmospheric pressures, and in the absence of swelling phenomena no mutual interaction exists. On a theoretical basis any mutual interaction between diffusing and counter-diffusing gases could only occur: i) at high pressures , when the free movement of permeating gas molecules within the polymer is hindered by the counter-diffusing gas; ii) when a large part of the free volume fraction is occupied by the counter--diffusing gas; iii) swelling phenomena modify the structure and free volume fraction of the polymer.

  • PDF

Experimental Study on the NOx Emission Characteristics of Low Calorific Value(LCV) Gas Fuel at Premixed Combustion Condition (저 발열량 가스 연료의 예혼합 연소시 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan;Yun, Yong-seung
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.23-29
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value (LCV) coal derived gas fuel. Synthetic LCV fuel gas is produced by mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas. The syngas mixture is fed to and burnt with air on flat flame burner. With the variation of the equivalence ratio for specific syngas fuel, flame behaviors are observed to identify the flame instability due to blow-off or flashback and to define stable combustion range. Measurements of NOx content in combustion gas are made for comparing thermal and fuel NOx from the LCV syngas combustion with those of the natural gas one. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique, and its effects on thermal and fuel NOx production are discussed.

  • PDF

Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2 Thin Films (투명한 p형 반도체 CuAlO2 박막의 일산화질소 가스 감지 특성)

  • Park, Soo-Jeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.477-482
    • /
    • 2013
  • We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type $CuAlO_2$ thin film gas sensors. The $CuAlO_2$ film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type $CuAlO_2$ active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type $CuAlO_2$ layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type $CuAlO_2$ thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of $180^{\circ}C$. We also found that these $CuAlO_2$ thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor $CuAlO_2$ thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor $CuAlO_2$ thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.

A Study on Optimal Nitrox for Safe Underwater Works: Diving Simulation-Based Assessments (안전한 수중작업을 위한 최적 나이트록스 고찰 : 잠수모의 평가)

  • Lee, Woo Dong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.70-78
    • /
    • 2020
  • Nitrox diving was introduced by the NOAA (National Oceanic and Atmospheric Administration) to increase the oxygen content and lower the nitrogen content in respiratory gases. The commercial diving sector specializing in underwater operations has recently introduced regulations on the use of Nitrox. Because the respiratory gas for Nitrox diving has a lower nitrogen content than the normal air, the amount of nitrogen dissolved in the body is small, which not only significantly reduces the decompression time compared to air diving, but also reduces the chance of exposure to decompression sickness. In this study, we applied the VPM (Varying Permeability Model) algorithm to virtual diving with air and Nitrox as a respiratory gas, respectively, to study the optimal Nitrox diving for the safety at the underwater works. The results showed that Nitrox diving had a longer NDL (No-Decompression Limit), a much shorter depression time. In other words, Nitrox diving in underwater works is safer from decompression sickness than commonly used air diving.

Thermal Decomposition Characteristics on Sodium Azide and Metallic Oxide Mixtures (나트륨 아지드와 금속산화물과의 혼합물에 대한 열분해 특성)

  • 이내우;최재욱;박광수;설수덕;왕석주
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.106-113
    • /
    • 1997
  • The thermal characteristics of two binary mixtures by sodium azide/manganese dioxide and ferric oxide, two ternary mixtures by sodium azide/silicon dioxide/manganese dioxide and ferric oxide were studied to obtain the basic data of gas-generating agents for air bags. The thermal reaction for all mixtures started at about $420^{\circ}C$, but the temperature at which the reaction rate reached a maximum was different with the states of samples. According to reaction results, nitrogen, nitrogen oxide and nitrogen dioxide were detected by GC-MS and so many kinds of new chemicals from sodium azide and metal oxide mixtures by XRD. NMS is considered as most stable and reasonable mixture for this types of gas-generating agents.

  • PDF

The Characteristics of $GaAs_{0.35}P_{0.65}$ Epitaxial Layer According to in-situ doping of $NH_3$ gas (In-situ $NH_3$ doping에 따른 $GaAs_{0.35}P_{0.65}$ 에피막의 특성)

  • Lee, Eun-Cheol;Lee, Cheol-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1249-1251
    • /
    • 1998
  • We have studied the properties of $GaAs_{0.35}P_{0.65}$ epitaxial films on the GaP according to doping of $NH_3$ gas using VPE method by CVD. The efficiency of $GaAs_{0.35}P_{0.65}$ epitaxial films found to be greatly enhanced by the according of nitrogen doping. The diodes were fabricated by means of Zn diffusion into vapor grown $GaAs_{0.35}P_{0.65}$ epitaxial films doped with N and Te. The effects of nitrogen doping on carrier density of epitaxial films, PL wavelength and the power out, forward voltage of diodes are discussed. In the end, The effect of electrical and optical properties is influenced by the deep level and deep level density of nitrogen doping.

  • PDF

Effect of Impinging Plate on Exhaust Emission and Engine Performance in Diesel Engine

  • Jin, Yong-Su;Kim, Jae-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.82-88
    • /
    • 2015
  • The purpose of this study is to investigate the effect of the impinging plate on combustion process in Diesel engine. Especially, the variation of exhaust emission and engine performance by the change of fuel injection timing and fuel injection pressure between the trial engine with impinging plate and the prototype engine were examined. The nitrogen oxide concentration of the trial engine decreased more than 50% compared to the prototype engine, however, smoke concentration of the trial engine indicated higher degree than the prototype engine. The smoke concentration, fuel consumption rate and exhaust gas temperature decreased as the fuel injection timing become faster, whereas the nitrogen oxide concentration decreased as the fuel injection timing is retarded. The nitrogen oxide concentration, fuel consumption rate and exhaust gas temperature decreased as the fuel injection pressure become lower. But smoke concentration decreased as the fuel injection pressure become higher.

Effect of nitrogen doping on properties of plasma polymerized poly (ethylene glycol) film

  • Javid, Amjed;Long, Wen;Lee, Joon S.;Kim, Jay B.;Sahu, B.B.;Jin, Su B.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.286-288
    • /
    • 2014
  • This study deals with the catalyst free radio frequency plasma assisted polymerization of ethylene glycol using nitrogen as reactive gas to modify the surface chemistry and morphology. The deposited film was characterized through various analysis techniques i.e. surface profilometry, Forier transform infrared spectroscopy, water contact angle and UV-visible spectroscopy to analyze film thickness, chemical structure, surface energy and optical properties respectively. The surface topography was analyzed by Atomic force microscopy. It was observed that the ethylene oxide behaviour and optical transmittance of the film were reduced with the introduction of nitrogen gas due to higher fragmentation of monomer. However the hydrophilic behavior of the film improved due to formation of new water loving functional groups suitable for biomedical applications.

  • PDF

Fabrication of AlN Powder by Self-propagating High-temperature Synthesis I. Synthesis of AlN Powder (자전고온 반응 합성법에 의한 AlN 분말의 제조 I.AlN 분말의 제조)

  • 신재선;안도환;김석윤;김용석
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.961-968
    • /
    • 1996
  • The aluminum nitride was synthesized by the self-propagating high-temperature synthesis(SHS). The synthe-sis was used aluminum powder mixed with AlN powder as reactant and the control factors affected to synthesis were considered compact density pressure of reaction gas AlN diluent content and aluminum powder size. The SHS reaction conducted with a reactant containing 50% AlN diluent under 0.8MPa nitrogen gas pressure yielded a complete conversion of aluminum powder to AlN powders. The size and purity of AlN produced were found to be comparable with that of AlN produced by the carbothermal nitrogen method.

  • PDF