• Title/Summary/Keyword: nitrogen fertilizer rate

Search Result 500, Processing Time 0.028 seconds

Incorporation Effect of Green Manure Crops on Improvement of Soil Environment on Saemangeum Reclaimed Land during Silage Corn Cultivation

  • Yang, Chang-Hyu;Lee, Jang-Hee;Baek, Nan-Hyun;Shin, Pyeong;Cho, Kwang-Min;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.187-192
    • /
    • 2013
  • This study was carried out to investigate the incorporation effect of green manure crops (GMC) such as the hairy vetch on improvement of soil environment in reclaimed land during silage corn cultivation over the past two years. Plots consisted of conventional fertilization (CF) and incorporation of GMC were divided by addition rate of nitrogen fertilizer (100 kg $ha^{-1}$) with 30 - 100% of non nitrogen fertilization (NNF). Soil physico-chemical properties and growth and yield potential of silage corn were examined. The tested soils showed strong alkali and saline properties with low contents of organic matter and available phosphate while contents of exchangeable sodium and magnesium were high. Soil salinity increased during cultivation of summer crop. However, corn was not affected by salt content. The fresh weight of GMC at incorporation time was 18,345 kg $ha^{-1}$. Content of total nitrogen was 3.09% and the C/N ratio was 12.8 at incorporation time. Fresh and dry matter yield of silage corn were higher in the order of N30% reduction, CF, N50% reduction, N70% reduction, N100% reduction and NNF. Fresh and dry matter yield potential of silage corn for N30% reduction were comparable to those of CF. Bulk density of the soil decreased with incorporation of GMC, while porosity was increased. The soil pH decreased while content of exchangeable calcium, available phosphate, and organic matter increased. Also contents of exchangeable sodium and potassium decreased with incorporation of GMC. The data indicate that incorporation of hairy vetch can improve soil physical and chemical properties and reduce nitrogen fertilizer application especially for alkali saline reclaimed soil such as Saemangeum reclaimed land.

Evaluation of the Amount of Nitrogen Top Dressing Based on Ground-based Remote Sensing for Leaf Perilla (Perilla frutescens) under the Polytunnel House

  • Kang, Seong-Soo;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.598-607
    • /
    • 2016
  • This study was conducted to evaluate the amount of nitrogen (N) top dressing based on the normalized difference vegetation indices (NDVI) by ground based sensors for leaf perilla under the polyethylene house. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization with 3 and 4 replications in Gumsan-gun and Milyang-si field, respectively. Dry weight (DW), concentration of N, and amount of N uptake by leaf perilla as well as NDVIs from sensors were measured monthly. Difference of growth characteristics among treatments in Gumsan field was wider than Milyang. SPAD-502 chlorophyll meter reading explained 43.4% of the variability in N content of leaves in Gumsan field at $150^{th}$ day after seedling (DAS) and 45.9% in Milyang at $239^{th}$ DAS. Indexes of red sensor (RNDVI) and amber sensor (ANDVI) at $172^{th}$ day after seedling (DAS) in Gumsan explained 50% and 57% of the variability in N content of leaves. RNDVI and ANDVI at $31^{th}$ DAS in Milyang explained 60% and 65% of the variability in DW of leaves. Based on the relationship between ANDVI and N application rate, ANDVI at $172^{th}$ DAS in Gumsan explained 57% of the variability in N application rate but non significant relationship in Milyang field. Average sufficiency index (SI) calculated from ratio of each measurement index per maximum index of ANDVI at $172^{th}$ DAS in Gumsan explained 73% of the variability in N application rate. Although the relationship between NDVIs and growth characteristics was various upon growing season, SI by NDVIs of ground based remote sensors at top dressing season was thought to be useful index for recommendation of N top dressing rate of leaf perilla.

Growth, Yield and Grain Quality affected by Seeding Rates and Fertilizing Combinations in Spring-sown Jinyangbori

  • Kim, Dae-Ho;Kim, Su-Kyeong;Kim, Eun-Seok;Song, Guen-Woo;Kang, Dong-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was conducted for 2 years at Chinju region to establish suitable seeding rate and fertilizing levels of nitrogen, phosphorous and potassium in spring-sown Jinyangbori. Heading and maturing were delayed by increasing fertilizers, especially nitrogen. Number of spikes per were secured by much seeding and increased application of nitrogen. One thousand grain weight reduced with increasing fertilization at any seeding rate. Relatively high harvest indices were observed with 12-10-4 at 10kg. 10a$^{-l}$ seeds planted, followed by 6-10-8 at 15 kgㆍ 10a$^{-1}$, and 6-10-4kgㆍ 10a$^{-l}$ at 20kg ㆍ 10a$^{-l}$ of N-P-K fertilizing combinations, respectively. There was no distinct differences on yield for various seeding rates in spring-sown barley. When seeding rate increased up to 15kgㆍ10a$^{-1}$, the positive effect of fertilizers was recognized as the function of balanced-application. It was possible to recommend 10kgㆍ10a$^{-1}$ as seeding rate and 6-5-4(N-P-K)kgㆍ10a$^{-1}$ as fertilizing combination in spring-time seeding considering low input and sustainable agriculture. There was no significant difference of protein content in grain by seeding rate. Increase of nitrogen fertilizer enhanced protein content in grain.

  • PDF

The Effects of Nitrogen Fertilizers and Cultural Patterns on Methane Emission From Rice Paddy Fields (논토양에서 질소비종 및 벼 재배양식이 메탄가스 발생에 미치는 영향)

  • Ko, Jee-Yeon;Kang, Hang-Won;Kang, Ui-Gum;Park, Hang-Mee;Lim, Dong-Kuy;Park, Kyeng-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.227-233
    • /
    • 1998
  • To mitigate the methane emission from rice paddy fields, effects of nitrogen fertilizers source and cultural patterns were evaluated on silty loam soils. And a pot experiment was carried out to find out the effects of nitrogen fertilizers on soil pH, Eh, sulfate concentration of soil water in flooded soil. In transplanting cultivation, the total methane emission depending on fertilizers was $32.9gm^{-2}$ for urea ; $30.3gm^{-2}$ for ammonium sulfate ; $26.4gm^{-2}$ for coated urea. Methane emitted in direct seeding on dry soil was $24.7gm^{-2}$ for urea ; $16.7gm^{-2}$ for ammonium sulfate : and $22.8gm^{-2}$ for coated urea. Thus, the methane emission rate of direct seeding on dry soil was 29.7% lower than transplanting. According to the nitrogen fertilizers, the methane emission rate by ammonium sulfate and coated urea were reduced 18.4 and 15.9% in comparison with urea, respectively. In pot experiments, pH in flooded soils depending on nitrogen fertilizers dereased in order of urea > coated $urea{\fallingdotseq}no$ fertilizer > ammonium sulfate and the order was coincided with that of total $CH_4$ emission from flooded soil. Soil Eh was highest in ammonium sulfate application followed by coated urea, no fertilizer, urea. And sulfate concentrations of soil water were in order of ammonium sulfate > coated urea > urea > no fertilizer.

  • PDF

Studies on the growth of Korea Lawn Grass (Zoysia japonica Steud.)in Reponse to Nitrogen Application, Clipping Treatment and Plant Density (질소시용, 예초 및 재식밀도가 한국잔디(Zoysia Japonica Steud)의 생육에 미치는 영향)

  • Sim, Jae-Seong
    • The Journal of Natural Sciences
    • /
    • v.1
    • /
    • pp.61-113
    • /
    • 1987
  • The increasing emphasis placed on the production of fine turf for lawns, golf courses, parks, and other recreational sites has led to many unsolved problems as to how such turf could be best established and mainteined. For this purpose, a series of experiments were conducted under con ditions of pot and field. The results obtained were as follows EXPERIMENT I. The effect of nitrogen fertilizer and clipping interval on Zoysia japonica. 1. Increasing the rate of nitrogen and frequent clipping increased tiller number of Zoysis japonica and the maximum number of tillers were obtained from 700 kg N application and freqnent clippings (10 days interval ) in October. Treatment of 350kg N with 10 days clipping interval increased tillers much more than those of 700 kgN with 20 and 30 days clipping intervals. 2. The average number of green leaves occurred during the growth period maximized by applying 700 kg N and clipping 10 days interval. 3. Increasing tiller numbers significantly decreased tops DM weight per tiller by clipping plants at interval of 10 and 20 days, irrespective of nitrogen applied, and with nil N, at the interval of 30 days. By applying 700 kg N, however, top DM weight per tiller increased as the number of tillers increased consistently. 4. The highest top DM weight was achieved from late August to early September by applying 350 and 700kgN. 5. During the growth period, differences in unders ( stolon + root ) DM weight occurred bynitrogen application were found between nil N and two applied nitrogen levels, whereas, at the same level of nitrogen applied, the increase in stolon DM weight enhanced by lengthening the clipping interval to 30 days. 6. Nitrogen efficiency to green leaves, stolon nodes and DM weight of root with high nitrogen was achieved as clipping interval was shortened. 7. By increasing fertilizer nitrogen rate applied, N content n the leaves and stems of Zoysiajaponica was increased. On the other hand, N content in root and stolon had little effect onfertilizer nitrogen, resulting in the lowest content among plant fractions. The largest content of N was recorded in leaves. Lengthening the clipping interval from 10 or 20 to 30 days tends to decrease the N content in the leaves and stems, whereas this trend did not appeared in stolon androot. 8. A positive correlations between N and K contents in tops and stolon were established andthus K content increased as N content in tops and stolon increased. Meanwhile, P content was not affected by N and clipping treatments. 9. Total soluble carbohydrate content in Zoysia japonica was largest in stolon and stem, and was reduced by increasing fertilizer nitrogen rate. Reduction in total soluble carbohydrate due to increased nitrogen rate was severer in the stolons and stems than in the leaves. 10. Increasing the rate of nitrogen applied increased the number of small and large vascular bundles in leaf blade, but shortened distance among the large vascular bundles. Shortening the clipping interval resulted in increase of the number of large vascular bundles but decrease ofdistance between large vascular bundles.EXPERIMENT II. Growth response of Zoysia japonica imposed by different plant densities. 1. Tiller numbers per unit area increased as plant density heightened. Differences in num ber between densities at higher densities than 120 D were of no significance. 2. Tiller numbers per clone attained by 110 days after transplanting were 126 at 40D,77 at 80D, 67 at 120D, 54 at 160D, and 41 at 200D. A decreasing trend of tiller numbers per clone with increasing density was noticable from 100 days after transplanting onwards. 3. During the growth period, the greatest number of green leaves per unit area were attainedin 90days after transplanting at 160D and 200D, and 100 days after transplanting at 40D, 80Dand 120D. Thus the period to reach the maximum green leaf number with the high plantdensity was likely to be earlier that with the low plant density. 4. Stolon growth up to 80 days after transplaning was relatively slow, but from 80 daysonwards, the growth quickened to range from 1.9 m/clone at 40D to 0.6m/clone at 200Din 200 days after transplanting, these followed by the stolon node produced. 5. Plant density did not affect stolon weight/clone and root weight/clone until 80 daysafter transplanting. 6. DM weight of root was heavier in the early period of growth than that of stolon, butthis trend was reversed in the late period of growth : DM weight of stolon was much higherthan that of root.EXPERIMENT Ill. Vegetative growth of Zoysia japonica and Zoysia matrella as affected by nitrogen and clipping height. 1. When no nitrogen was applied to Zoysia japonica, leaf blade which appeared during theAugust-early September period remained green for a perid of about 10 weeks and even leavesemerged in rate September lived for 42 days. However, leaf longevity did not exceed 8 weeks asnitrogen was applied. In contrast the leaf longevity of Zoysia matrella which emerged during the mid August-earlySeptember period was 11 weeks and, under the nitrogen applied, 9 weeks, indicating that thelife-spen of individual leaf of Zoysia matrella may be longer than that of Zoysia japorica. Clipping height had no effect on the leaf longevity in both grasses. 2. During the July-August period, tiller number, green leaf number and DM weightof Zoysia japonica were increased significantly with fertilizer nitrogen, but were not with twolevel of clipping height. This trend was reversed after late September ; no effect of nitrogen wasappeared. Instead, lax clipping increased tiller number, green leaf number and DM weight. Greenleaves stimulated by lax clipping resulted in the occurrance of more dead leaves in late October. 3. Among the stolons outgrown until early September, the primary stolon was not influencedby nitrogen and clipping treatments to produce only 2-3 stolons. However, 1st branch stoIon asaffected by nitrogen increased significantly, so most of stolons which occurred consisted of 1st branch stolons. 4. Until early September, stolon length obtained at nil nitrogen level was chiefly caused bythe primary stolons. By applying nitrogen, the primary stolons of Zoysia japonica waslonger than 1st branch stolons when severe clipping was involved and in turn, shorter than 1stbranch stolons when lax clipping was concerned. In Zoysia matrella, 1st branch stolons were muchlonger than the primary stolon when turf was clipped severely but in conditions of lax clippingthere was little difference in length between primary and 1st branch stolons. 5. Stolon nodes of both Zoysia japonica and Z. matrella were positively influenced by nit rogen, but no particular increase by imposing clipping height treatment was marked in Zoysiamatrella. Although the stolon of Zoysia japonica grew until late October, the growthstimulated by nitrogen was not so remarkable as to exceed that by nil N.

  • PDF

Application Effects of Fermented Mixed Organic Fertilizer Utilizing By-Products on Yield of Chinese Cabbage and Soil Environment (부산물 활용 발효 유기질비료가 배추 수량 및 토양환경에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-Min;Oh, Eun-mi;Lee, Cho-Rong;Gong, Min-Jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.77-85
    • /
    • 2020
  • This study analyzes the effects of mixed fermented organic fertilizer on chinese cabbage growth and soil properties in order to investigate the nutritional effects of organic fertilizers, which are developed as an alternative fertilizer for imported castor oil cake. In this study, four treatments were set up: 100% and 200% rate of nitrogen application (320 kg ha-1 for Chinese cabbage) on mixed fermented organic fertilizer A(FA) and mixed fermented organic fertilizer B(FB), respectively, 100% rates of the mixed expeller cake (MEC) fertilizer, and the untreated control. Results revealed that the growth and yield of Chinese cabbage increased as more fermented organic fertilizer was used. However, while there were no significant differences in growth characteristics between treatments of 100% rate of mixed fermented organic fertilizer and 100% rate of MEC, the impacts on yields resulted similar. The nitrogen use efficiency (NUE) of Chinese cabbage was measured a range of 20-31% depending on the response to treatment. The 100% FA showed the same as NUE and nitrogen absorption with 100% rate of MEC. Regarding soil properties after cultivation, there were no significant differences among the effects of fertilizers in pH, EC, soil organic matter, and available phosphate. However, the content of exchangeable cations(K, Ca, Mg) was higher in areas treated with mixed fermented organic fertilizer than in untreated areas. Furthermore, the bacterial population density in the soil was higher in areas treated with mixed fermented organic fertilizer than in untreated areas and increased as more mixed fermented organic fertilizer was used. There were no significant differences in the population density of actinomycetes and fungi when fertilizer was applied to the soil. These results also show that FA, as a alternative organic fertilizer for imported castor oil cake, has similar nutritional effects as that of MEC. Therefore, further research the appropriate amounts of fertilizer is required to achieve economical and eco-friendly nutrient management.

Changes in the Nitrate Assimilation and Ascorbic Acid Content of Spinach Plants Treatmented with Nutrient Solutions Containing High Nitrogen and Low Potassium (고질소 및 저 칼륨 양액처리시 시금치내의 비타민C및 질소 대사의 변화)

  • Park, Yang-Ho;Seo, Beom-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.301-306
    • /
    • 2009
  • This study was conducted to determine the physiological differences betweenhealthy and wilted plants with respect to nitrate assimilation and ascorbic acid content. Wilting was artificially induced in spinach plants by treating the seeds with nutrient solution containing high nitrogen and low potassium. The plants were cultured in different plots 4 types of media: 1N-1P-1K (control), 6N-1P-0K (0K), 6N-1P-0.5K (0.5K), and 6N-1P-2K (2K). The rate of wilting among the plants was as follows: control, 0%; 2K, 10%; 0.5K, 40%; and 0K, 70%. This shows that under high nitrogen conditions, the lower the amount of potassium provided, higher was the rate of wilting. There were no differences in plant growth among the plants treated with different levels of potassium under high nitrogen conditions.The nitrate content in both the leaves and the roots was higher in plants grown under high nitrogen media than those in the control. Furthermore, the nitrate level decreased with increasing potassium concentration. The ascorbic acid content of spinach under high nitrogen conditions was lower than those of the control.

Chemical Properties of Slow-Released Nitrogen Fertilizer Using Waste Paper Slurry (폐지섬유를 이용한 완효성 요소비료의 특성)

  • Kim, Bok-Jin;Back, Jun-Ho;Lee, Byung-Guen
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2000
  • The purpose of this study was conducted to develop the slow-released N fertilizer(SRNF) using of waste paper cellulose. Properties of trial product was investigated. Contents of nitrogen, phosphorus, and potassium in trial product were showed 26%, 0.04 and 0.01%, respectively. The contents of Cr, Cu, Pb and Zn were showed 17.4ppm. 259ppm, 12.2ppm and 60.0ppm in the trial product, respectively. However, As and Cd was not detected. Nitrogen of SRNF could be released 60.4% within 12hr after dissolution in water. However, the releasing velocity was thereafter remarkably delayed, showing 75% after dissolution for 72hr.

  • PDF

Effect of Additional Nitrogen Fertilizer Application on Decreasing of Preharvest Sprouting in Winter Wheat (질소 추비시용이 밀 수발아 억제에 미치는 영향)

  • Kim, Young-Jin;Kim, Hag-Sin;Kang, Cheon-Sik;Kim, Kyoung-Hun;Hyun, Jong-Nae;Kim, Kee-Jong;Park, Ki-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • Preharvest sprouting seriously reduces milling and baking quality of hard winter wheat (Triticum aestivum L.) grain. To determine the effect of nitrogen fertilizer application on decreasing of preharvest sprouting, several levels of N-fertilization were conducted in two winter wheat cv. Keumkang and Jokyung, grown in Iksan. Nitrogen fertilization is used to increase grain yield and protein content. Grain yield increased at 108kg/ha (50% increased nitrogen to the standard) application and decreased as more nitrogen was applied. There was a linear increase in grain protein contents with increasing level of nitrogen application. Germination rate, germination index and ABA sensitivity were gradually reduced by increasing of nitrogen application level. Preharvest sprouting showed a significantly correlation to germination rate but could not be correlated to protein content and falling number. A significant positive correlation was detected between preharvest sprouting and different additional nitrogen fertilizer levels.

Development of Optimal Seed Production Methods Using Domestic Rye Cultivar in Central and North Area of Korea (중·북부지역에서 국내육성 호밀품종의 채종방법)

  • Han, Ouk-Kyu;Song, Ju-Hee;Ku, Ja-Hwan;Kim, Dea-Wook;Kwon, Young-Up;Lee, Yu-Young;Park, Chang-Hwan;Kweon, Soon-Jong;Ahn, Jong-Woong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.44-52
    • /
    • 2018
  • This experiment was conducted at Suwon, Korea from 2013 to 2015. The objective of this study was to establish the optimum seeding rate, and to clarify the nitrogen fertilizer level for rye seed production in central and north area of Korea. We used Korean rye cultivar 'Gogu' for this test. We employed a split-plot design with three replications. The main plots were designed by three seeding levels (3, 5 and $7kg\;10a^{-1}$), but other sub-plots were randomly seeded. The plots were treated with three different nitrogen fertilizer levels (3, 6 and $9kg\;10a^{-1}$). The percentage of productive tiller, number of grain per spike, fertility rate, 1 liter weight, and 1000-grain weight decreased as seeding rate increased from $3kg\;10a^{-1}$ to $7kg\;10a^{-1}$, whereas the number of spike per $m^2$ increased. Therefore the grain yields of rye had less of an effect by increasing seeding rate. There was an increase in number of spike per $m^2$, number of grain per spike, and fertility rate as nitrogen fertilizer level increased from $3kg\;10a^{-1}$ to $9kg\;10a^{-1}$, but grain yields significantly not affected by the interaction of seeding rate ${\times}$ nitrogen fertilizer levels. However, the best seeding rate and nitrogen fertilizer level for rye seed production were 5 kg and $5{\sim}6kg\;10a^{-1}$, respectively, considering seed and fertilizer reduction and the prevention of pollution by excess fertilization.