• Title/Summary/Keyword: nitrogen fertilizer application rate

Search Result 315, Processing Time 0.028 seconds

Effect of Integrated Use of Organic and Fertilizer N on Soil Microbial Biomass Dynamics, Turnover and Activity of Enzymes under Legume-cereal System in a Swell-shrink (Typic Haplustert) Soil.

  • Manna, M.C.;Swarup, A.
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.375-381
    • /
    • 2000
  • Quantifying the changes of soil microbial biomass and activity of enzymes are important to understand the dynamics of active soil C and N pools. The dynamics of soil microbial biomass C and N and the activity of enzymes over entire growth period of soybean-(Glycine max (L) Merr.)-wheat (Triticum aestivum L.) sequence on a Typic Haplustert as influenced by organic manure and inorganic fertilizer N were investigated in a field experiment. The application of farmyard manure at 4 to 16 $Mg{\cdot}ha^{-1}\;y^{-1}r^{-1}$ along with fertilizer nitrogen at 50 or 180 $kg{\cdot}ha^{-1}$ increased the mean soil microbial biomass from 1.12 to 2.05 fold over unmanured soils under soybean-wheat system. Irrespective of organic and chemical fertilizer N application, the soil microbial biomass was maximum during the first two months at active growing stage of the crops and subsequently declined with crop maturity. The mean annual microbial activity was significantly increased when manure and chemical fertilizer at 8 $Mg{\cdot}ha^{-1}$ and 50/180 N $kg{\cdot}ha^{-1}$, respectively were applied. The C turnover rate decreased by 47 to 72 % when the level of farmyard manure was increased from 4 to 8 and 16 $Mg{\cdot}ha^{-1}$. There were significant correlations between biomass C, available N, dehydrogenase, phosphatase and yield of the crops.

  • PDF

Effects of Planting Density and Fertilizer Level on the Growth, Yield, Quality and Nitrogenous Compounds of Burley Tobacco (재식밀도 및 시비량이 버어리종 잎담배의 생육, 수량, 품질 및 질소화합물에 미치는 영향)

  • Kim, Sang-Beom;Han, Chul-Soo;Ryu, Ik-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 1987
  • Under the different conditions of planting density and compound fertilizer level, some agronomic and chemical characteristics of burley tobacco were investigated from 1982 to 1984. Leaf area and dry leaf weight per plant, crop growth rate, relative growth rate and net assimilation rate for 40-60 days after transplanting were higher with increasing plant spacing and fertilizer, but leaf area index was lower with increasing plant spacing. At topping stage, the leaf size was increased with increasing plant spacing and amount of fertilizer applied and the stem diameter was increased by increasing plant spacing. Leaf area, leaf weight per plant and weight per unit leaf area of harvested leaf were higher when plant spacing and fertilizer increased. It was estimated that the optimum plant spacing was 105cm x 34cm and level of com-pound fertilizer (N-P$_2$ O$\sub$5/ -K$_2$O =10-10-20) was 263kg/l0a for high yield. There were trends toward increase the contents of total alkaloid and total nitrogen with increasing plant spacing and fertilizer application. There was significant positive correlation between plant spacing and total nitrogen, and between fertilizer application and total nitrogen. The plant spacing of 105cm x 35 to 40cm and 227.5kg/l0a of fertilizer level may be profitable for farm economy and the low nitrogenous leaf.

  • PDF

Effect of seeding rate of Crotalaria (Crotalaria juncea L.) on Green Manure Yield and Nitrogen Prodution in Upland Soil

  • Cho, Hyeoun-Suk;Seong, Ki-Yeung;Park, Tea-Sun;Seo, Myung-Chul;Kim, Mi-Hyang;Kang, Hang-Won;Lee, Hye-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.445-451
    • /
    • 2013
  • We researched nitrogen and green manure yield of crotalaria by seeding rate; 50, 60, 70, 80, 90 kg $ha^{-1}$ in upland soil to find out crotalaria's optimal seeding rate. Crotalaria's plant height and number of leaves increased when the harvest time was later regardless of its seeding rate. Its nitrogen content of above-ground part was 19.8 g $ha^{-1}$, and C/N ratio was 22.5. The highest nitrogen content (50.3 g $ha^{-1}$) was found in flowers part, followed by its leaves, roots and stems. The green manure yields of crotalaria increased when the harvest time was later. The green manure yield of crotalaria was biggest in 50kg $ha^{-1}$ which was low in seeding rate. It tended to decrease when the seeding rate was higher, and the nitrogen yield had the same tendency. Therefore, the appropriate seeding rate was 50kg $ha^{-1}$ and the time for application to soil was considered to be the flowering stage.

Growth, Yield and Grain Quality affected by Seeding Rates and Fertilizing Combinations in Spring-sown Jinyangbori

  • Kim, Dae-Ho;Kim, Su-Kyeong;Kim, Eun-Seok;Song, Guen-Woo;Kang, Dong-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was conducted for 2 years at Chinju region to establish suitable seeding rate and fertilizing levels of nitrogen, phosphorous and potassium in spring-sown Jinyangbori. Heading and maturing were delayed by increasing fertilizers, especially nitrogen. Number of spikes per were secured by much seeding and increased application of nitrogen. One thousand grain weight reduced with increasing fertilization at any seeding rate. Relatively high harvest indices were observed with 12-10-4 at 10kg. 10a$^{-l}$ seeds planted, followed by 6-10-8 at 15 kgㆍ 10a$^{-1}$, and 6-10-4kgㆍ 10a$^{-l}$ at 20kg ㆍ 10a$^{-l}$ of N-P-K fertilizing combinations, respectively. There was no distinct differences on yield for various seeding rates in spring-sown barley. When seeding rate increased up to 15kgㆍ10a$^{-1}$, the positive effect of fertilizers was recognized as the function of balanced-application. It was possible to recommend 10kgㆍ10a$^{-1}$ as seeding rate and 6-5-4(N-P-K)kgㆍ10a$^{-1}$ as fertilizing combination in spring-time seeding considering low input and sustainable agriculture. There was no significant difference of protein content in grain by seeding rate. Increase of nitrogen fertilizer enhanced protein content in grain.

  • PDF

Studies on the Growth and Nutrient Uptaking of Flag Leaf and Chaff of Rice Plant in Cold Injury Location II, Influence of Different Nitrogen and Silicate Application on the Nutrient Uptaking of Chaff in Rice Plant (냉해지대의 수도생육과 임, 불임인각의 양분흡수에 관한 연구 제3보 질소와 규산시용량의 차이가 인각의 양분흡수에 미치는 영향)

  • Kim, Y.J.;Choi, S.I.;Ra, J.S.;Lee, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 1983
  • This experiment was conducted to study about influenced inorganic element contents of flag leaf and chaff with different nitrogen and silicate application in Jinan (sea level 303m). The recommended rate of fertilizer application above N 15kg/10a was poor for dry production increment in cold in July elevation and was demanded increment of silicate. In the elevation of cold in July high rates of nitrogen application produced more incomplete grain and a reduced cold tolerance. These effects were due to over-content of soluble nitrogen within flag leaf and disturbance of uptaking potassium and silicate. On the other hand, the application of silicate could increase yield by promoting resistance to cold- damage. The application of increasing level of nitrogen resulted in increasing the contents of total nitrogen and phosphate in both sterile and fertile glumes. The contents of potassium and calcium were the highest at the level of nitrogen 10 - 15kg/10a, but magnessium was rather high at low nitrogen levels. It is interesting that at any level of nitrogen, over 6% higher silicate contents were noted in the fertile chaff than in the sterile chaff. Application of increasing level of silicate fertilizer decreased total nitrogen contents, but increased the contents of phosphate, potassium. and silicate in the chaff. Increasing rate of silicate content by increasing silicate addition was remarkably higher in the fertile chaff than in the sterile chaff.

  • PDF

Response of Rice Yield to Nitrogen Application Rate under Variable Soil Conditions

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.247-255
    • /
    • 2005
  • ice yield and plant growth response to nitrogen (N) fertilizer may vary within a field, probably due to spatially variable soil conditions. An experiment designed for studying the response of rice yield to different rates of N in combination with variable soil conditions was carried out at a field where spatial variation in soil properties, plant growth, and yield across the field was documented from our previous studies for two years. The field with area of 6,600 m2 was divided into six strips running east-west so that variable soil conditions could be included in each strip. Each strip was subjected to different N application level (six levels from 0 to 165kg/ha), and schematically divided into 12 grids $(10m \times10m\;for\;each\;grid)$ for sampling and measurement of plant growth and rice grain yield. Most of plant growth parameters and rice yield showed high variations even at the same N fertilizer level due to the spatially variable soil condition. However, the maximum plant growth and yield response to N fertilizer rate that was analyzed using boundary line analysis followed the Mitcherlich equation (negative exponential function), approaching a maximum value with increasing N fertilizer rate. Assuming the obtainable maximum rice yield is constrained by a limiting soil property, the following model to predict rice grain yield was obtained: $Y=10765{1-0.4704^*EXP(-0.0117^*FN)}^*MIN(I-{clay},\;I_{om},\;I_{cec},\;I_{TN},\; I_{Si})$ where FN is N fertilizer rate (kg/ha), I is index for subscripted soil properties, and MIN is an operator for selecting the minimum value. The observed and predicted yield was well fitted to 1:1 line (Y=X) with determination coefficient of 0.564. As this result was obtained in a very limited condition and did not explain the yield variability so high, this result may not be applied to practical N management. However, this approach has potential for quantifying the grain yield response to N fertilizer rate under variable soil conditions and formulating the site-specific N prescription for the management of spatial yield variability in a field if sufficient data set is acquired for boundary line analysis.

Effect of Legume Cover Crops and Nitrogen Fertilization Rates on Yield and Nitrogen Use Efficiency of Waxy Corn (Zea mays L.) in No-Tillage System

  • Choi, Jong-Seo;Kim, Min-Tae;Ryu, Jin-Hee;Kim, Kwang Seop;Kim, Sook-Jin;Park, Ki-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.531-540
    • /
    • 2016
  • The adoption of legume cover crops in no-tillage system can contribute to improve soil fertility by providing several benefits, including reduction in soil erosion, suppression of weed growth and N supply to subsequent crops. We conducted a field study to investigate the effect of cover crops and nitrogen fertilization rates on yield and nitrogen use efficiency of waxy corn (Zea mays L.) in no-tillage upland field. Two legume cover crops, hairy vetch (Vicia villosa Roth) and crimson clover (Trifolium incarnuturn L.) were mechanically terminated with roller in early June. For each cover crop treatment, nitrogen (N) fertilizer was applied at three different rates (145, 72.5 and $0kg\;N\;ha^{-1}$). The growth and yield characteristics of corn were significantly affected by the N fertilization rates in crimson clover plots, which suggest N mineralization from the cover crop residue was not sufficient. In contrast, N fertilization rates had no significant effect on growth and yield of corn in hairy vetch plots, indicating that the amount of N released from the cover crop is large enough to meet most of the N requirement of corn. However, the application of N fertilizer in hairy vetch cover plots resulted in slight increase of crop yield, though not statically significant, and high levels of N concentration in corn plant tissue possibly due to luxury consumption of N. Organic residues on the soil surface in hairy vetch cover plots had substantial amounts of N after harvest, ranging from 100 to $116kg\;N\;ha^{-1}$, which is presumably retained during winter season and released by microbial mineralization in subsequent year. The highest nitrogen yield efficiency was achieved in the plot with hairy vetch cover and no N fertilizer application, followed by the plot with hairy vetch cover and $72.5kg\;N\;ha^{-1}$ fertilization rate. In conclusion, hairy vetch showed better performance in corn productivity as compared with crimson clover. In addition, it was concluded that the application of N fertilizer between 0 and $72.5kg\;N\;ha^{-1}$ in combination with hairy vetch cover crop might be most efficient for corn yield under no-tillage system with climatic and soil characteristics similar to those of the experimental site.

Effects of Stubble Height, Irrigation and Nitrogen Fertilization on Rice Ratooning in Korea

  • Shin, Jong-Hee;Kim, Sang-Kuk;Park, Sang-Gu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.4
    • /
    • pp.431-435
    • /
    • 2015
  • Rice (Oryza sativa L.) ratooning is the production of a second rice crop from the stubble left behind after the main crop harvest. The objectives of this study were to evaluate the effects of main-crop stubble height, irrigation and fertilization on ratoon grain yield. Main crop 'Jinbuol' rice cultivar was harvested to leave with 10, 20, 30, or 40 cm stubble height. When the main crop stubble was harvested with 10 cm height, ratoon rice grain yield was increased by 2,810 kg/ha. Irrigation on stubbles after main crop harvest did not affect the ratoon crop yield and rice quality. The results showed a large variation in the ratoon performance by fertilizer application methods. Top-dressed nitrogen fertilizer on the stubble after harvest caused increase in panicle production and higher maturity rate. However, there was no significant difference in protein content, amylose content of milled rice and cooked rice characters between plots managed with and without nitrogen fertilizer.

Effects of Organic Matters Application with the Different Levels of Nitrogen Fertilizer over a 5 Year on the Soil Physico-Chemical Properties and Rice Yields (질수수준별(窒素水準別) 유기물연용(有機物連用)이 토양(土壤)의 이화학적(理化學的) 특성(特性)과 수도수량(水稻收量)에 미치는 영향(影響))

  • Lee, Chun-Hee;Lee, Han-Seng;Choi, Seung-Lack;Shin, Weon-Kyo;Lee, Ryu-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 1986
  • This study was conducted to determine the effects of 5 years continuous application of compost and rice straw with the different rates of nitrogen fertilizer on physico-chemical properties of paddy soils and yield of rice. The results obtained were as follows; 1. The yield of rice was 7 and 4% higher at straw and compost treatment compared to the non-application of organic matter. The rate of yield response for nitrogen fertilizer was lowered as the amount of nitrogen application increased under the condition of organic matter application. 2. Dry mayer weight and total nitrogen content of rice plants were increased in the order of straw > compost > non-application of organic matter. Above two factors were positive correlations with yield but total nitrogen content was negative correlation with ripening rate. 3. $NH_4-N$ in the soil was higher at plot applicated with compost and straw than non-application. It was positive correlation ($r=0.62^*-0.79^{**}$) with total nitrogen content in rice plants from 15 days after transplanting to heading stage. 4. The physical properties of soil, hardness and infilteration rate, after 5 years experiment, were improved in the order of straw > compost > non-application of organic matter. Organic matter content in the soil was decreased 0.1% on the straw treatment after 4 years, 0.1% on the compost after 3 and 4 years, and 0.1% on the non-application every years.

  • PDF

Evaluation of the Amount of Nitrogen Top Dressing Based on Ground-based Remote Sensing for Leaf Perilla (Perilla frutescens) under the Polytunnel House

  • Kang, Seong-Soo;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.598-607
    • /
    • 2016
  • This study was conducted to evaluate the amount of nitrogen (N) top dressing based on the normalized difference vegetation indices (NDVI) by ground based sensors for leaf perilla under the polyethylene house. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization with 3 and 4 replications in Gumsan-gun and Milyang-si field, respectively. Dry weight (DW), concentration of N, and amount of N uptake by leaf perilla as well as NDVIs from sensors were measured monthly. Difference of growth characteristics among treatments in Gumsan field was wider than Milyang. SPAD-502 chlorophyll meter reading explained 43.4% of the variability in N content of leaves in Gumsan field at $150^{th}$ day after seedling (DAS) and 45.9% in Milyang at $239^{th}$ DAS. Indexes of red sensor (RNDVI) and amber sensor (ANDVI) at $172^{th}$ day after seedling (DAS) in Gumsan explained 50% and 57% of the variability in N content of leaves. RNDVI and ANDVI at $31^{th}$ DAS in Milyang explained 60% and 65% of the variability in DW of leaves. Based on the relationship between ANDVI and N application rate, ANDVI at $172^{th}$ DAS in Gumsan explained 57% of the variability in N application rate but non significant relationship in Milyang field. Average sufficiency index (SI) calculated from ratio of each measurement index per maximum index of ANDVI at $172^{th}$ DAS in Gumsan explained 73% of the variability in N application rate. Although the relationship between NDVIs and growth characteristics was various upon growing season, SI by NDVIs of ground based remote sensors at top dressing season was thought to be useful index for recommendation of N top dressing rate of leaf perilla.