• 제목/요약/키워드: nitrogen and phosphate recycle

검색결과 6건 처리시간 0.023초

Application of magnetic activated sludge process for a milking parlor wastewater treatment with nitrogen and phosphorus recovery

  • Onodera, Toshihito;Sakai, Yasuzo;Kashiwazaki, Masaru;Ihara, Ikko;Lal, Saha Mihir
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.20-25
    • /
    • 2021
  • Milking parlor wastewater contains high concentration suspended solid (SS), nitrogen, and/or phosphate as well as organic compounds. A new biological wastewater process by magnetic separation, magnetic activated sludge (MAS) process, was applied to milking parlor wastewater treatment process. A three step wastewater treatment process of coagulation sedimentation / ammonia stripping (C/S), magnetic activated sludge process and contact oxidation (CO) was proposed for removal of these pollutants. First step, C/S process recovered 96% TN and 96% PO43--P as resource for fertilizer from the wastewater. 81% biochemical oxygen demand (BOD) in wastewater was removed after MAS process. As a results, all pollutant concentrations satisfied Japanese effluent standards. Most of residual BOD and SS were removed by the CO process. It was estimated that the proposed process could reduce the process space to 1/7.

Ca과 응집제를 보완한 MAP법을 이용한 폐수로부터의 인 자원 회수에 관한 연구 (A Study on the Phosphorus Resources Recovery using the MAP + PACI)

  • 김동하
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.273-278
    • /
    • 2007
  • Modern society has moved from a phosphorus recycling loop, where animal manure and human wastes were spread on farming land to recycle nutrients, to a once-through system, where phosphates are extracted from mined, non-renewable phosphate rock and end up either in landfill(sewage sludge, incinerator ash) or in surface waters. In this research, crystallization of nitrogen and phosphate with natural sources of $Mg^{2+}$ in synthetic water was tested. The operational parameters of pH, mixing time, and the magnesium molar ratio were investigated to find optimal conditions of the MAP precipitation using synthetic wastewater. The removal efficiency of phosphate increased with pH up to 11. By MAP precipitaiton of the synthetic waste water, 94% of the phosphate were eliminated at pH 11. It was found that at least 10 minutes mixing time was required and 20 minutes mixing time was recommended for efficient phosphate removal. High efficiency removal of phosphate was possible when the magnesium molar ratio was 1.0~2.0. The comparative study of different magnesium sources showed that coagulants (PAC) was the more efficient sources than only magnesium. The result showed that 97% of phosphate removal. In conclusion, coagulants (PAC) induced crystallization of struvite and hydroxyapatite was shown to be a technically viable process that could prove cost effective for removing phosphate in wastewater.

Influence of Compost Recycling and Magnesium Supplement on Physical and Chemical Traits of Animal Manure Compost

  • Lee, Jin-Eui;Kwag, Jung-Hoon;Ra, Chang-Six
    • Journal of Animal Science and Technology
    • /
    • 제52권6호
    • /
    • pp.513-519
    • /
    • 2010
  • A series of experiments were performed to study the influence of the following parameters on the physical traits and composition of swine manure compost: (1) addition of magnesium (Mg) at a molar ratio of 1.2 with respect to $PO_4$, and (2) reutilization of compost containing $MgNH_4PO_4{\cdot}6H_2O$ (magnesium ammonium phosphate, MAP). Three independent batch tests were conducted for replication: batch test I-control (C) and Mg added (T), batch test II-C, T and compost recycle ($T_{R1}$), and batch test III-C, T and compost recycle ($T_{R2}$). Magnesium addition and compost reutilization had no adverse effect on the degradation of organic matter. Reuse of the compost, however, had a clear effect on the total nitrogen (TN) and total phosphorus (TP) contents in the final compost. Repeated compost reutilization as a bulking material was resulted in composts rich in N and P. Upon adding the Mg supplement to the composting materials, the ortho-phosphate (OP) to TP ratio decreased due to the MAP crystallization reaction. The decrease in the OP/TP ratio and the increase in the TP content of the compost indicate that water-soluble phosphate is converted into a slow-release phosphate by the formation of crystals during composting. X-ray diffraction analysis of the irregular shaped crystals in the compost indicated that they are MAP crystals and that the crystallization of MAP begins immediately after the addition of the Mg supplement. The Mg addition to composting materials and the reutilization of compost as a bulking material would be a practical means to conserve nutrient content.

돈분뇨 슬러리 액비저장조내 침전물 특성 연구 (A Study on Characteristics of Sediment from Pig Manure Slurry in Liquid Fertiluzer Storage Tank)

  • 이승훈;정광화;김중곤;;곽정훈;한덕우
    • 한국축산시설환경학회지
    • /
    • 제20권4호
    • /
    • pp.195-200
    • /
    • 2014
  • Liquid fertilization of pig manure slurry is very useful treatment method to recycle organic waste matter as a valuable fertilizer. The solids precipitate and accumulated at the bottom of liquid fertilization tank. The content of nitrogen and phosphate are higher in sediment than pig manure slurry. The pH of sediment was 7.53. S-COD/T-COD ratio of pig manure slurry and sediment were 0.477, 0.29, respectively. The moisture content of sediment of pig manure slurry and sediment were 80.45~83.82%, 97%, respectively. The content of organic matter of sediment was 8.79~10.56%. The content of nitrogen and phosphate of sediment and pig manure slurry were 9,000~11,100 mg/L, 9,100~11,100 mg/L, respectively. The particle size of pig manure slurry was distributed from 2 mm to 0.125 mm. On the other hand. the particle size of sediment was under 0.125 mm.

Effects of organic amendments on lettuce (Lactuca sativa L.) growth and soil chemical properties in acidic and non-acidic soils

  • Yun-Gu Kang;Jun-Yeong Lee;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.713-721
    • /
    • 2023
  • Soil acidification challenges global food security by adversely influences soil fertility and agricultural productivity. Carbonized agricultural residues present a sustainable and ecofriendly way to recycle agricultural waste and mitigate soil acidification. We evaluated the effects of organic amendments on lettuce growth and soil chemical properties in two soils with different pH levels. Carbonized rice husk was produced at 600℃ for 30 min and rice husk was treated at 1% (w·w-1). Carbonized rice husk increased soil pH, electrical conductivity, total carbon content, and nitrogen content compared with untreated and rice husk treatments. Furthermore, this study found that lettuce growth positively correlated with soil pH, with increasing soil pH up to pH 6.34 resulting in improved lettuce growth parameters. Statistical correlation analysis also supported the relationship between soil pH and lettuce growth parameters. The study findings showed that the use of carbonized rice husk increased the constituent elements of lettuce, such as carbon, nitrogen, and phosphate content. The potassium content of lettuce followed a similar trend; however, was higher in acidic soil than that in non-acidic soil. Therefore, improving the pH of acidic soil is essential to enhance agricultural productivity. It is considered advantageous to use agricultural residues following pyrolysis to improve soil pH and agricultural productivity.

폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양 (Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution)

  • 양진철;정희경;이형석;최승주;윤상순;안기섭;사동민
    • 한국토양비료학회지
    • /
    • 제37권3호
    • /
    • pp.177-183
    • /
    • 2004
  • 최근 시설 재배지에서는 사용된 배양액을 그냥 방출하고 있어서 지표수의 부영양화와 지하수의 오염을 유발시키는 것으로 알려져 있으며, 이와 같은 폐양액 처리 기술이 요구된다. 따라서 본 연구는 국내토양에서 분리된 광합성 독립영양 세균인 cyanobactria 중 우수한 균주를 선발하고 이의 생장에 필요한 다량의 N, P와 미량 필수원소 등 각종영양 물질이 충분히 함유된 폐양액을 이용하여 광합성 세균을 대량배양 하고자 하였다. 4종 (Anabaena HA101, HA701과 Nostoc HN601, HN701)의 미세조류 중 BG-II ($NO_3{^-}$) 액체배지에서 생장과 양분흡수능이 우수한 균체는 Nostoc HN601이었고, 이 균체는 질소 고정능 뿐만 아니라 균체 내 양분 보유능이 우수하여 본 실험을 위하여 최종 선발하였다. 선발된 Nostoc HN601의 최적 배양 조건는 통기처리 시 배양액 부피의 1/2수준의 조건과 초기 폐양액의 pH를 8.0으로만 조절 해주는 non-buffering 시스템이 효과적이었다. 최적 배양 조건하에서 Nostoc HN601을 15 L의 광배양기에 토마토를 수경 재배한 10 L의 폐양액을 이용하여 배양한 결과 균체의 생장은 $16mg\;Chl-a\;L^{-1}$로 실험실조건에서 배양된 균체 ($8.3mg\;Chl-a\;L^{-1}$)보다 약 2배정도 빠르게 증가되었으며, 폐양액 내 인산도 1주일 이내에 100% 제거시킴으로서 인산 제거효율이 매우 우수하였다. 또한 선발된 Nostoc HN601의 질소 고정능은 $22.4nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$로 매우 우수하였고, 균체 내 총 인산과 총 질소함량은 각각 19.1 mg P와 63.3 mg N으로 높게 나타났다. 이러한 결과로 광반응기에서 폐양액을 이용한 cyanobacteria의 대량배양은 부영양화와 지하수 오염을 일으키는 폐양액 내 인산제거에 큰 효과가 있고. 배양된 균체는 높은 질소와 인산을 함유하고 있어서 생물비료로도 이용할 수 있을 것으로 기대된다.