Effects of nitrogen addition on the growth of Indigofera pseudo-tinctoria (Leguminosae) in the waste landfill site was investigated. Nitrogen fertilization in the nitrogen poor soils of waste landfill may influence the growth of nitrogen fixing plants beneficially or detrimentally. When I. pseudo-tinctoria was fertilized with three different levels of nitrogen, the coverage of plants treated with 46 g N/$m^2$ and 460 g N/$m^2$ was significantly less than that of plants treated with 23 g N/$m^2$. The growth rates of plant height treated with 46 g N/$m^2$ and 460 g N/$m^2$ were significantly less than those of plants treated with 23 g N/$m^2$. The growth rates of plant diameter treated with 46 g N/$m^2$ and 460 g N/$m^2$ were significantly less than those of plants treated with 23 g N/$m^2$. Dry weights of whole plants in control sites were higher than those of all the others nitrogen treatment sites. Nodule numbers were higher in control plants than those of plants in all the other nitrogen treatment sites. It is suggested that nitrogen fertilizer addition over 23 g N/$m^2$ affect the growth of some nitrogen fixing plants, such as I. pseudo-tinctoria, negatively.
Woo, Yeun-Kyung;Eun-Jin Park;Dowon Lee;Kye Song Lee
The Korean Journal of Ecology
/
v.19
no.2
/
pp.179-189
/
1996
Growth and nitrogen retention of Persicaria thunbergii were investigated in the wetland microcosms which contained the plants growing on soil bed. Nitrogen solution was supplied to the microcosms with the same amount of $NH_4^{+}-N\; and\; NO_3^{-}-N$ at the rates of 0.00, 0.78, 1.57, 3.14g $N{\cdot}m^{-2}{\cdor}wk^{-1}$ from May 1 to August 31, 1995. The solution was detained for 5 days to react with soil and plant and then allowed to leach. The contents of NH_4^{+}-N\;and\; NO_3^{-}-N$ in the leachate, total Kjeldahl nitrogen, plant biomass, and soil characteristics were determined. Nitrogen retained by plant was estimated as the increment of TKN in plant biomass. The addition of 0.78 and 1.57g $N{\cdot}m^{-2}{\cdot}wk^{-1}$ resulted in significant increase of plant biomass. However, plant growth was inhibited when nitrogen was added at the rate of 3.14g $N{\cdot}m^{-2}{\cdot}wk^{-1}$. Overall, the plant biomass was positively correlated with the amount of nitrogen retained by plant and soil system. The amounts of $NO_3^{-}-N$ leached from the microcosms were 5~10 times higher than those of $NH_4^{+}-N$. While total nitrogen added ranged from 143.2 to 576.5g $N/m^2$, total leaching loss of inorganic nitrogen and nitrogen retained by plant was as little as 1.04~22.71g $N/m^2$, and 5.46~12.91g $N/m^2$, respectively. Then, the plant seemed to contribute to KDICical and microbial immobilization of nitrogen in the soil. Finally, it is suggested that a large portion of nitrogen added was lost into the air by denitrification and volatilizaton, and / or leached in organic forms.
Nitrogen(N) concentration of preterm(PT) and term (T) milk in various fractions, such as total, protein, nonprotein, whey protein and casein were determined at 2-5 days, 1, 2, 4 and 6 weeks of postpartum. The purpose of this study was to investigate the nitrogen concentration of human milk from mothers delivering at preterm and term, and the propriety of preterm milk for premature infants. The concentration of total N, nonprotein N, protein N, whey protein N and casein N in preterm milk was decreased significantly with time postpartum. Total N was 374mg/이 at colostrum, 232mg/dl at mature milk. Whey protein N was decreased from 42mg/dl at 2-5 days to 32mg/dl at 4-6 weeks. Protein N was 332mg/dl at colostrum, 202mg/dl at mature milk. The proportion of whey protein N and casein N were 39:61 at colostrum, 28:72 at mature milk. No difference were found between T and PT milk for total nitrogen excepted 2 weeks. In this report we show that nitrogen concentration except casetpt casein N is smaller in milk from mothers giving birth prematurely than in milk from mothers giving birth at term, over the first two weeks of lactationl But protein N was higher in preterm milk than term milk, whey protein nitrogen was lower. By comparing predicted nitrogen intakes to estimated requirements of preterm infants fed 150 to 200ml/kg/day of their own mother's milk, we predict that the quantities of protein provided would be adequate to meet the requirements of the prematured infants during the early weeks of life.
Journal of The Korean Society of Grassland and Forage Science
/
v.38
no.2
/
pp.140-144
/
2018
To investigate the impact of nitrogen (N) mineral on reproductive potential of Brassica napus L, plants were treated with different levels of N treatment ($N_0$; $N_{100}$; $N_{500}$). The half of N content for each treatment were applied at the beginning of the early vegetative stage and the rest was applied at the late vegetative stage. Nitrogen content in plant tissues such as root, stem and branch, leaf, pod and seed was analyzed and harvest index (HI) was calculated as percentage of seed yield to total plant weight. Biomass and nitrogen content were significantly affected by different levels of N supply. Biomass was significantly decreased by 59.2% in nitrogen deficiency ($N_0$) but significantly increased by 50.3% in N excess ($N_{500}$), compared to control ($N_{100}$). Nitrogen content in all organs was remarkably increased with nitrogen levels. N distribution to stem and branches, and dead leaves was higher in N-deficient ($N_0$) and N excessive plants ($N_{500}$) than in control ($N_{100}$). However, nitrogen allocated to seed was higher in control ($N_{100}$) than in other treatments ($N_0$ or $N_{500}$), accompanied by higher HI. These results indicate that the optimum level of N supply ($N_{100}$) improve HI and N distribution to seed and excessive N input is unnecessary.
The nitrogen economy and primary production of a Helianthus annuus "Manchurian" population were studied with special reference to the pattern of seasonal changes of vertical distributions of dry matter and nitrogen quantities, and its quantitative significance was discussed in relation to the pattern of the plant population growth, distribution ratios among organs, and turnover rates of dry matter and nitrogen. The population was established in plant density of 11.1plant/$m^2$ at the experimdntal field of Kyungpook National University, Daegu. During the period of population developemnt (April-September, 1973), the annual inflow rates and outflow rates of dry matter and nitrogen were 5560 gDM/$m^2$/year and 89 gN/$m^2$/year, respectively. The distribution ratios of dry matter and nitrogen to leaves were 28% and 45%, to stems 48% and 18%, to roots 13% and 5%, and to flowers and seeds 11% and 32%, respectively. The maximum turnover rates of inflow of dry matter and nitrogen were attained in May-June, and were 216%/month and 210%/month, respectively. The amount of nitrogen demand was 52gN/$m^2$/year (58%) for the foliage growth, 13 gN/$m^2$/year(15%) for the stem growth, 20 gN/$m^2$/year(23%) for the reproductive organs, and 4 gN/$m^2$/year(4%) for the growth of the underground parts. The amount of nitrogen supply by the nitrogen withdrawn from senescing leaves and stems was 25gN/$m^2$/year(28%) and the amount of nitrogen absorption by the root from the environmental soil was 64 gN/$m^2$/year(72%). The ratiio of the a mount of produced dry matter to that of assimilated nitrogen during a year was calculated for this annual plant population as 60, which can be used as the nitrogen utility index.ity index.
Various methods for assessing soil total nitrogen (TN) and inorganic N content have been developed to manage nutrient and to understand N cycle in soil. This paper address the technical procedures in arable soil samples to conduct soil sampling, sample preparation, and measuring total N and inorganic N. Among various methods for measuring soil total nitrogen contents, Kjeldahl distillation and Indophenol blue method have widely used due to reliability and economic advances. Also, two methods can analyze more samples at the same time compared with other nitrogen measuring methods. For evaluating inorganic N content, mainly in forms of nitrate-N ($NO_3{^-}-N$) and ammonium-N ($NH_4{^+}-N$), extraction with a single reagent such as 2M KCl has been employed, followed by Kjeldahl distillation or indophenol blue methods.
Jongkeon Kim;Bokyung Hong;Myung Ja Lee;Beob Gyun Kim
Animal Bioscience
/
v.36
no.3
/
pp.492-497
/
2023
Objective: The objectives were to demonstrate that the nitrogen and energy in pig urine supplemented with hydrochloric acid (HCl) are not volatilized and to determine the minimum amount of HCl required for nitrogen preservation from pig urine. Methods: In Exp. 1, urine samples of 3.0 L each with 5 different nitrogen concentrations were divided into 2 groups: 1.5 L of urine added with i) 100 mL of distilled water or ii) 100 mL of 6 N HCl. The urine in open plastic containers was placed on a laboratory table at room temperature for 10 d. The weight, nitrogen concentration, and gross energy concentration of the urine samples were determined every 2 d. In Exp. 2, three urine samples with different nitrogen concentrations were added with different amounts of 6 N HCl to obtain varying pH values. All urine samples were placed on a laboratory table for 5 d followed by nitrogen analysis. Results: Nitrogen amounts in urine supplemented with distilled water decreased linearly with time, whereas those supplemented with 6 N HCl remained constant. Based on the linear broken-line analysis, nitrogen was not volatilized at a pH below 5.12 (standard error = 0.71 and p<0.01). In Exp. 3, an equation for determining the amount of 6 N HCl to preserve nitrogen in pig urine was developed: additional 6 N HCl (mL) to 100 mL of urine = 3.83×nitrogen in urine (g/100 mL)+0.71 with R2 = 0.96 and p<0.01. If 62.7 g/d of nitrogen is excreted, at least 240 mL of 6 N HCl should be added to the urine collection container. Conclusion: Nitrogen in pig urine is not volatilized at a pH below 5.12 at room temperature and the amount of 6 N HCl required for nitrogen preservation may be up to 240 mL per day for a 110-kg pig depending on urinary nitrogen excretion.
In this research, Effect of C/N ratio on nutrient removal in intermittently aerated activated sludge system(IAASS) was investigated with dormitary, building and swine wastewater. Three types (2-stage, 4-stage, modified) of IAASS were operated. Time interval of aeration/nonaeration in IAASS was 1hr/1hr. In treatment of Dormitary wastewater(BOD/T-N ratio : 4.4), Building wastewater (BOD/T-N ratio : 3.14) and swine wastewater(BOD/T-N ratio : 3.84), Nitrogen removal efficiency of 80, 70 and 90.4% was achieved, respectively. Nitrogen removal in IAASS was a great influenced on influent C/N ratio, efficient nitrogen removal was achieved at BOD/T-N ratio over 4. In IAASS operation, $\Delta $BOD mg/L/$\Delta $ nitrogen mg/L ratio was about 4-6. Simultaneous removal of organic, nitrogen and phosphorus in IAASS can achieved. And influent organic was efficiently utilized in denitrification. IAASS could be one of the best alternative process for the retrofit of conventional activated sludge system for the removal of nutrients.
Kim, Young-Sun;Choi, Mun-Jin;Youn, Jeong-Ho;Lee, Geung-Joo
Korean Journal of Environmental Agriculture
/
v.41
no.3
/
pp.167-176
/
2022
BACKGROUND: Nitrogen (N) is an important element for turfgrass (Zoysia matrella) growth; however, standard N application rate for turfgrass is not established yet. This study was conducted to evaluate the effect of N application rates on the growth and quality of turfgrass for establishment of standard N application rate. METHODS AND RESULTS: Treatments were as follows; control (0 N g/m2/month), 1N (1 N g/m2/month), 2N(2 N g/m2/month), 3N (3 N g/m2/month), 4N (4 N g/m2/month), and 5N (5 N g/m2/month). N application improved visual turfgrass quality. Compared with the control, clipping yield of all N treatments increased by 90~194%. The grass shoot weight of 3N, 4N, and 5N treatments increased by 52%, 43%, and 111%, respectively, and the stolon weight of 4N and 5N treatments increased by 412% and 201%, respectively, compared to the control. The N uptake amount and N recovery rate were estimated to be 4.10~6.28 g/m2 and 14~58%, respectively. CONCLUSION(S): These results indicate that considering visual quality, clipping yield, N uptake amount, and N recovery, the application rate of 2~3 N g/m2/month was suggested to be suitable for Z. matrella production.
This study was conducted to identify the appropriate nitrogen fertilizer application rate for improving rice quality in tidal reclaimed area, at the Gyehwado substation of the Honam Agricultural Research Institute during 2002-2(103. The experimental fields contained 0.1% (low salinity) and 0.3-0.4% (medium salinity) Nacl in soil solution. Plant height at panicle formation stage was tall ay heavy nitrogen level and the effect of heavy nitrogen was higher in low than in high soil salinity condition. Heading date was not affected by applied nitrogen levels from 8 to 16 kg/10a in low soil salinity condition but it was one day later in 24 kg/10a nitrogen level when compared with the standard nitrogen level,20 kg/10a. In middle soil salinity condition, the heading date was one day earlier in 8 to 16 kg/10a and similar in 24 kg/10a, when compared with 20 kg/10a nitrogen level. And also it was four days later in middle than in low soil salinity condition. In low soil salinity condition, grain number $\textrm{m}^2$ increased but ripened grain ratio decreased as the nitrogen application increased and finally, milled rice yield was not different among heavy nitrogen application levels compared with 12 kg/10a. Head rice ratio was high and protein content was low in 12 kg/10a or lower nitrogen level. In middle soil salinity condition, grain number $\textrm{m}^2$ increased and ripened grain ratio was not affected as the nitrogen application increased. And finally, milled rice yield increased with increasing nitrogen application levels, Head rice ratio was high and protein content was not affected by nitrogen application levels. Therefore, on the basis of milled rice yield and rice grain quality inreclaimed land, the appropriate nitrogen application level would be 12 kg/10a in low soil salinity condition and 20 kg/10a in middle soil salinity condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.