• Title/Summary/Keyword: nitrobenzene

Search Result 124, Processing Time 0.022 seconds

Reducing Characteristics of Potassium Tri-sec-butylborohydride

  • Yoon, Nung-Min;Hwang, Young-Soo;Yang, Ho-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.382-388
    • /
    • 1989
  • The approximate rates and stoichiometry of the reaction of excess potassium tri-sec-butylborohydride ($K_s-Bu_3BH$) with selected organic compounds containing representative functional groups were determined under the standard conditions (0$^{\circ}C$, THF) in order to define the characteristics of the reagent for selective reductions. Primary alcohols evolve hydrogen in 1 h, but secondary and tertiary alcohols and amines are inert to this reagent. On the other hand, phenols and thiols evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to the corresponding alcohols. Reduction of norcamphor gives 99.3% endo- and 0.7% exo-isomer of norboneols. The reagent rapidly reduces cinnamaldehyde to the cinamyl alcohol stage and shows no further uptake of hydride. p-Benzoquinone takes up one hydride rapidly with 0.32 equiv hydrogen evolution and anthraquinone is cleanly reduced to the 9,10-dihydoxyanthracene stage. Carboxylic acids liberate hydrogen rapidly and quantitatively, however further reduction does not occur. Anhydrides utilize 2 equiv of hydride and acyl chlorides are reduced to the corresponding alcohols rapidly. Lactones are reduced to the diol stage rapidly, whereas esters are reduced moderately (3-6 h). Terminal epoxides are rapidly reduced to the more substituted alcohols, but internal epoxides are reduced slowly. Primary and tertiary amides are inert to this reagent and nitriles are reduced very slowly. 1-Nitropropane evolves hydrogen rapidly without reduction and nitrobenzene is reduced to the azoxybenzene stage, whereas azobenzene and azoxybenzene are inert. Cyclohexanone oxime evolves hydrogen without reduction. Phenyl isocyanate utilizes 1 equiv of hydride to proceed to formanilide stage. Pyridine and quinoline are reduced slowly, however pyridine N-oxide takes up 1.5 equiv of hydride in 1 hr. Disulfides are rapidly reduced to the thiol stage, whereas sulfide, sulfoxide, sulfonic acid and sulfone are practically inert to this reagent. Primary alkyl bromide and iodide are reduced rapidly, but primary alkyl chloride, cyclohexyl bromide and cyclohexyl tosylate are reduced slowly.

Comparative Study of Emission Quenching of Tris(${\alpha},{\alpha}'$-diimine)-Ruthenium(II) Complexes in Homogeneous and Sodium Dodecyl Sulfate Micellar Solutions

  • Park, Joon-Woo;Nam, Eun-Jin;Ahn, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.686-691
    • /
    • 1991
  • Emission quenching of photoexcited tris(${\alpha},{\alpha} '$-diimine)-ruthenium(II) complex cations, $RuL_3^{2+}$ (L: 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine; 4,4'-diphenyl-2,2'-bipyridine; 1,10-phenanthroline; 5-methyl-1,10-phenanthroline; 5,6-dimethyl-1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline) by $Cu^{2+}$, dimethylviologen $(MV^{2+})$, nitrobenzene (NB), and oxygen was studied in aqueous homogeneous and sodium dodecyl sulfate (SDS) micellar solutions. The apparent bimolecular quenching rate constants $k_q$ were determined from the quenching data and life-times of $^{\ast}RuL_3^{2+}$. In homogeneous media, the quenching rate was considerably slower than that for the diffusion-controlled reaction. The decreasing order of quenching activity of quenchers was $NB>O_2>MV^{2+}>Cu^{2+}$. The rate with $Cu^{2+}$ was faster as the reducing power of $^{\ast}RuL_3^{2+}$ is greater. On the other hand, the rates with NB and $O_2$ were faster as the ligand is more hydrophobic. This was attributed to the stabilization of encounter pair by van der Waals force. The presence of SDS enhanced the rate of quenching reactions with $Cu^{2+}$ and $MV^{2+}$, whereas it attenuated the quenching activity of NB and $O_2$ toward $RuL_3^{2+}$. The binding affinity of quenchers to SDS micelle and binding sites of the quenchers and $RuL_3^{2+}$ in micelle appear to be important factors controlling the micellar effect on the quenching reactions.

Reaction of Sodium Diethyldihydroaluminate with Selected Organic Compounds Containing Representative Functional Groups

  • Yoon Nung Min;Shon Young Seok;Ahn Jin Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess sodium diethyldihydroaluminate (SDDA) with 68 selected organic compounds containing representative functional groups were examined under standard conditions (THF-toluene, $0^{\circ}C$ in order to compare its reducing characteristics with lithium aluminum hydride (LAH), aluminum hydride, and diisobutylaluminum hydride (DIBAH) previously examined, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, thiols and amines evolve hydrogen rapidly and quantitatively. Aldehydes and ketones of diverse structure are reduced rapidly to the corresponding alcohols. Reduction of norcamphor gives 11% exo-and 89% endo-norborneol. Conjugated aldehydes such as cinnamaldehyde are rapidly and cleanly reduced to the corresponding allylic alcohols. p-Benzoquinone is mainly reduced to hydroquinone. Hexanoic acid and benzoic acid liberate hydrogen rapidly and quantitatively, however reduction proceeds very slowly. Acid chlorides and esters tested are all reduced rapidly to the corresponding alcohols. However cyclic acid anhydrides such as succinic anhydride are reduced to the lactone stage rapidly, but very slowly thereafter. Although alkyl chlorides are reduced very slowly alkyl bromides, alkyl iodides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced very slowly; however, tertiary amides take up 1 equiv of hydride rapidly. Tertiary amides could be reduced to the corresponding aldehydes in very good yield ( > 90%) by reacting with equimolar SDDA at room temperature. Hexanenitrile is reduced moderately accompanying 0.6 equiv of hydrogen evolution, however the reduction of benzonitrile proceeds rapidly to the imine stage and very slowly thereafter. Benzonitrile was reduced to give 90% yield of benzaldehyde by reaction with 1.1 equiv of hydride. Nitro compounds, azobenzene and azoxybenzene are reduced moderately at $0^{\circ}C$, but nitrobenzene is rapidly reduced to hydrazobenzene stage at room temperature. Cyclohexanone oxime is reduced to the hydroxylamine stage in 12 h and no further reaction is apparent. Pyridine is reduced sluggishly at $0^{\circ}C$, but moderately at room temperature to 1,2-dihydropyridine stage in 6 h; however further reaction is very slow. Disulfides and sulfoxides are reduced rapidly, whereas sulfide, sulfone, sulfonic acid and sulfonate are inert under these reaction conditions.

The Analysis and Isolation of Component from Liquefied Wastepaper (폐지 용액화물로부터 성분분리 및 분석)

  • Chang, Jun-Pok;Yang, Jae-Kyung;Lim, Bu-Kug;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • This research was carried out to investigate the component isolation method from liquefied waste paper. and isolated component was analyzed by molecular weight distribution with gel chromatography and nitrobenzene-oxidation analysis. In the aspect of liquefaction ratio, wet defibration fiber are better than dry defibration fiber because of wet defiberation fiber was easy to access of chemical solution. The optimal liquefaction condition of waste paper was treated at 190℃ for 60 min(cresol 2 ㎖, water 4 ㎖, phosphoric acid 0.5 ㎖ based on waste paper 1 g). In the liquefied waste paper, lignin and carbohydrate were separated with two interfacial layer(cresol layer, water layer). In the chemical analysis of isolated lignin, molecular weight distribution of isolated lignin was below 1,000.

Degradation of the Selected Pesticides by Gas Discharge Plasma (기체플라즈마에 의한 농약분해특성 연구)

  • Min, Zaw Win;Hong, Su-Myeong;Mok, Chul-Kyoon;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • As increasing the use of pesticides both in number and amount to boost crop production, consumer concerns over food quality and safety with respect to residual pesticides are also continuously increasing. However, there is still lacking of information that can effectively help to remove residual pesticides in foods. In recent years, contaminant removal by gas (or) glow discharge plasma (GDP) attracts great interests on environmental scientists because of its high removal efficiency and environmental compatibility. It was shown to be effective for the removal of some organophosphorus pesticides, phenols, benzoic acid, dyes, and nitrobenzene on solid substrate or in aqueous solution. This work mainly focuses on the removal of wide range of residual pesticides from fresh fruits and vegetables. As for preliminary study, the experiments were carried out to investigate whether GDP can be used as an effective tool for degrading target pesticides or not. With this objective, 60 selected pesticides drop wised onto glass slides were exposed to two types of GDP, dielectric barrier discharge plasma (DBDP) and low pressure discharge plasma (LPDP), for 5 min. Then, they were washed with 2 mL MeCN which were collected and used for determination of remaining concentration of pesticides using LC-MS/MS. Among selected pesticides, degradation of 18 pesticides (endosulfan-total was counted as one pesticide) by GDP could not be examined because control treatments, which were left in ambient environment, of those pesticides recovered less than 70% or even did not recover. However, majority of tested pesticides (42) were degraded by both types of GDP with satisfactory recovery (>80%) of control sample. Pesticides degradation ranged from 66.88% to 100% were achieved by both types of plasma except clothianidin which degradation in LPDP was 26.9%. The results clearly indicate that both types of gas discharge plasma are promising tools for degrading wide range of pesticides on glass substrate.

Modification of Indophenol Reaction for Quantification of Reduction Activity of Nanoscale Zero Valent Iron (나노 영가철 환원 반응성의 정량 분석을 위한 수정된 인도페놀법 적용)

  • Hwang, Yuhoon;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.667-675
    • /
    • 2016
  • Nanoscale zero-valent iron (nZVI) has been effectively applied for environmental remediation due to its ability to reduce various toxic compounds. However, quantification of nZVI reactivity has not yet been standardized. Here, we adapted colorimetric assays for determining reductive activity of nZVIs. A modified indophenol method was suggested to determine reducing activity of nZVI. The method was originally developed to determine aqueous ammonia concentration, but it was further modified to quantify phenol and aniline. The assay focused on analysis of reduction products rather than its mother compounds, which gave more accurate quantification of reductive activity. The suggested color assay showed superior selectivity toward reduction products, phenol or aniline, in the presence of mother compounds, 4-chlorophenol or nitrobenzene. Reaction conditions, such as reagent concentration and reaction time, were optimized to maximize sensitivity. Additionally, pretreatment step using $Na_2CO_3$ was suggested to eliminate the interference of residual iron ions. Monometallic nZVI and bimetallic Ni/Fe were investigated with the reaction. The substrates showed graduated reactivity, and thus, reduction potency and kinetics of different materials and reaction mechanism was distinguished. The colorimetric assay based on modified indophenol reaction can be promises to be a useful and simple tool in various nZVI related research topics.

A Study on the Evolution of 3, 4-DCA and TCAB in Some Selected Soils [Part I]-A New Method of Synthesizing $^{14}C-ring-labeled$ and Non labeled TCAB- (수종토양중(數種土壤中)에서 3, 4-DCA 및 TCAB의 변화(變化)에 관(關)한 연구(硏究)제1보(第一報)-$^{14}C$-환표식(換標識) 및 비표식(非標識) TCAB의 신합성방법(新合成方法)-)

  • Lee, Jae-Koo;Fournier, J-C.;Catroux, G.
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.109-116
    • /
    • 1977
  • Much attention has been paid to the fact that quite a few herbicides such as phenylcarbamates, phenylureas, and acylanilides form azo compounds known as carcinogens by virtue of the microoranisms in soil. In consequence, many investigators synthesized. TCAB, an azo compound, starting from 3,4-dichloronitrobenzene for the related studies. However, the authors were under the necessity of synthesizing $^{14}C-ring-labeled$ TCAB from $^{14}C-ring-labeled$ 3,4-DCA available, in addition to making up for the disadvantage of dechlorination in the reduction of 3,4-dichloronitrobenzene. The new method is as follows:TCAB, $^{14}C-ring-labeled$ and non-labeled, was produced by aerial oxidation of 3,4-DCA catalyzed by CuCl with pyridine as solvent at $60^{\circ}C$ for 5-12 hrs, giving 80.2% yield. The procedure forpurification was described in detail. The identities of TCAB isomers were confirmed by means of autoradiography, TLC, GLC, IR, and MS.

  • PDF

Glycerol Carbonate Synthesis by Glycerol Oxidative Carbonylation over Copper Catalysts (구리 촉매상에서 글리세롤의 산화 카르보닐화 반응에 의한 글리세롤 카보네이트 합성)

  • Choi, Jae Hyung;Lee, Sang Deuk;Woo, Hee Chul
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.416-422
    • /
    • 2013
  • In environmental friendly aspects, the synthesis of glycerol carbonate from glycerol using carbon monoxide and oxygen gases which were produced in petrochemical plants was studied. The oxidative carbonylation of glycerol under batch reaction system was performed on parameter conditions such as effect of various metals (Cu, Pd, Fe, Sn, Zn, Cr), oxidizing agents, mole ratio of carbon monoxide to oxygen, catalyst amount, solvent types, reaction temperature and time and dehydrating agents. In particular copper chloride catalysts showed the excellent activities, and the glycerol carbonate yields over CuCl and $CuCl_2$ catalysts were the maximum of 44% and 64%, respectively at the following reaction conditions: solvent as nitrobenzene, mole ratio of 1:3:0.15 (glycerol:carbon monoxide:catalyst), mole ratio of 2:1 (carbon monoxide:oxygen), the total pressure of 30 bar at 413 K for 4 hr. It was found that reactivity were significantly different depending on the oxidation number of Cu catalysts, and oxygen plays an important role as oxidizing agents in producing H2O during oxidation reaction after carbonylation of glycerol.

DETERMINATION OF CADMIUM, COPPER, LEAD, ZINC AND MERCURY IN SEA WATER BY ATOMIC ABSORPTION SPECTROPHOTOMETRY (해수중 카드뮴, 구리, 납, 아연 및 수은의 원자흡광정량법)

  • WON Jong Hun;PARK Chung Kil;YANG Han Serb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.3
    • /
    • pp.169-175
    • /
    • 1976
  • A solvent extraction-atomic absorption spectrophotometry for determination of trace amount of cadmium, copper, lead and zinc and a flameless atomic absorption spectrophotometry for mercury in sea water were studied. The optimum pH range for solvent extraction was pH 4-7. A better solvent extraction efficiency was obtained with MIBK solvent than nitrobenzene, benzene, isoamylalcohol, n-buthylacetate. DDTC was more advantageous than APDC as chelating agent. The metals, chelated with DDTC and concentrated into MIBK by solvent extraction with a volume of $1\iota$ of sea water for cadmium, copper and lead, and 200m1 for zinc, were determined simultaneously by atomic absorption spectrophotometry. For mercury determination, 500ml of sea water was digested with permanganate-sulfuric acid and mercury( II ) was reduced by stannous chloride and aerated the solution with air pump until the absorbance reached a constant value. The precisions, in standard deviation, of these methods were 0.058ppb for cadmium, 0.084 ppb for copper, 0.44ppb for lead, 2.49ppb for zinc and 0.08 ppb for mercury. The sensitivities, expressed in $ppb/1\%$ absorption, were 0.058 ppb cadmium, 0. 15 ppb copper, 0.6 ppb lead, 1.2 ppb zinc and 0.01 ppb mercury respectively. No significant adsorption on the wall of polyethylene sample bottle occurred during 30 days of storing by acidification to pH 1.5 with nitric acid except zinc. Poor reproducibility was found for zinc with this method.

  • PDF

Synthesis, Antibacterial and Antifungal Activities of Some Cobalt(II) and Nickel(II) Complexes of Thiosemicarbazones (Thiosemicarbazones의 몇 가지 코팔트(II) 및 니켈(II) 착물에 대한 합성, 항박테리아 및 항균 활성)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.189-198
    • /
    • 2011
  • In the present paper two new thiosemicarbazones i.e., 4[N-(4'-ethylbenzalidene)amino]antipyrine thiosemicarbazone (EBAAPTS) and 4[N-(2',4'-dimethylbenzalidene)amino]antipyrine thiosemicarbazone (DMBAAPTS) have been synthesized and characterized. The complexing abilities of these thiosemicarbazones i.e. EBAAPTS and DMBAAPTS towards cobalt(II) and nickel(II) salts have been explored. The reactions of the hot ethanolic solutions of cobalt(II) and nickel(II) salts with EBAAPTS and DMBAAPTS led to the formation of the novel complexes of general composition [$MX_2(L)H_2O$] (M=$Co^{2+}$ or $Ni^{2+}$; X=$Cl^-$, $Br^-$, $NO_3^-$, $NCS^-$ or $CH_3COO^-$; L=EBAAPTS or DMBAAPTS). The newly synthesized complexes have been characterized by elemental analyses, molar mass, molar conductance, magnetic susceptibility, infrared and electronic spectral studies. The molar conductance measurements of the complexes in nitrobenzene correspond to their non-electrolytic nature. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes of the type [$MX_2(L)H_2O$]. These complexes were screened for their antibacterial and antifungal activities on different species of pathogens, fungi and bacteria and their biopotency has been discussed.