• Title/Summary/Keyword: nitrite oxide

Search Result 268, Processing Time 0.023 seconds

Evaluation of Oxidation Inhibition and Nitrogen Oxide Scavenging Activity from Curcuma longa L. Extracts (울금(Curcuma longa L.) 추출물의 산화억제 및 질소산화물 소거활성)

  • Oh, Da-Young;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • The aim of the present investigation was to assess the oxidation inhibition by nitrogen oxide scavenging activity and physiological activities. Bioactive compound of proanthocyanidin $69.000{\pm}2.737mg$ catechin equivalents (CE)/g dry weight. Antioxidant effects (nitric oxide radical scavenging activity, nitrite scavenging activity, ${\beta}$-carotene bleaching assay and lipid peroxidation inhibition activity) of distilled water (DW), 70% ethanol and n-butanol extract of turmeric (Curcuma longa L.). Turmeric extracts yield were DW 17.11%, 70% ethanol 15.26% and n-butanol 4.12%, respectively. Oxidation inhibition activity of the samples exhibited a dose-dependent increase. However, in the current study, none of the samples evaluated showed activity as strong as the BHA and trolox. Total flavonoid content was the highest in the n-butanol extract, followed by 70% ethanol and DW extract. Further, nitrite scavenging activity was the highest for the n-butanol extract. As a result of this experiment, the turmeric can be utilized as a valuable and potential natural oxidation inhibition for the functional food industry.

Taurine Activates ERK2 and Induces the Production of Nitric Oxide in Osteoblast-like UMR-106 Cells

  • Park, Sung-Youn;Kim, Harriet;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.145-145
    • /
    • 1998
  • In the present study, we have demonstrated that taurine could stimulate the production of nitric oxide and the activity of ERK2 (extracellular signal regulated protein kinase or pp42 MAP kinase). Nitric oxide(NO), the product of inducible nitric oxide synthase(iNOS), is known to be implicated in the metabolism of bone. ERK cascade plays a key role in the gene expression of iNOS in osteoblastic cell. We investigated whether taurine (l-20mM) could stimulate ERK2 activity, nitric oxide production, and inducible nitric oxide synthase in osteoblast-like UMR-106 cells. Nitric oxide was measured spectophotometrically as nitrite and the activation of ERK2 and iNOS was studied using Western 145 blot analysis. Taurine increased the production of nitric oxide in a dose-dependent manner and the effect was reached to a maximum at 10 mM. The activation of iNOS were consistent with NO levels. The tyrosine phosphorylation of ERK2 was increased by taurine in a time-dependent manner. The these result suggest that taurine might stimulate the production of nitric oxide in osteoblast-like cells by the activation of ERK2 and could regulate the metabolism of bone via nitric oxide.

  • PDF

Enhanced Expression of Inducible Nitric Oxide Synthase May Be Responsible for Altered Vascular Reactivity in Streptozotocin-induced Diabetic Rats

  • Jang, Jae-Kwon;Kang, Young-Jin;Seo, Han-Geuk;Seo, Sook-Jae;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.375-382
    • /
    • 1999
  • Growing evidence indicates that enhanced generation or actions of nitric oxide (NO) are implicated in the pathogenesis of hypertension in spontaneously hypertensive rats and diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. We investigated whether inducible nitric oxide synthase (iNOS) expression in STZ-induced diabetic rats is responsible for the alterations of vascular reactivity. Diabetic state was confirmed 28 days after injection of STZ (i.p) in rats by measuring blood glucose. In order to evaluate whether short term (4 weeks) diabetic state is related with altered vascular reactivity caused by iNOS expression, isometric tension experiments were performed. In addition, plasma nitrite/nitrate (NOx) levels and expression of iNOS in the lung and aorta of control and STZ-treated rats were compared by using Griess reagent and Western analysis, respectively. Results indicated that STZ-treated rats increased the maximal contractile response of the aorta to phenylephrine (PE), and high $K^+,$ while the sensitivity remained unaltered. Endothelium-dependent relaxation, but not SNP-mediated relaxation, was reduced in STZ-treated rats. Plasma nitrite/nitrates are significantly increased in STZ-treated rats compared to controls. The malondialdehyde (MDA) contents of liver, serum, and aorta of diabetic rats were also significantly increased. Furthermore, nitrotyrosine, a specific foot print of peroxynitrite, was significantly increased in endothelial cells and smooth muscle layers in STZ-induced diabetic aorta. Taken together, the present findings indicate that enhanced release of NO by iNOS along with increased lipid peroxidation in diabetic conditions may be responsible, at least in part, for the augmented contractility, possibly through the modification of endothelial integrity or ecNOS activity of endothelium in STZ-diabetic rat aorta.

  • PDF

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Kim, Mi Jin;Kadayat, Taraman;Kim, Da Eun;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.390-399
    • /
    • 2014
  • Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Inhibitory effect of Scrophulariae Radix extract on $TNF-{\alpha},\;IL-1{\beta}$, IL-6 and Nitric Oxide production in lipopolysaccharide - activated Raw 264.7 cells (현삼메탄올 추출물이 LPS로 유도된 Raw 264.7 cell에서의 $TNF-{\alpha},\;IL-1{\beta}$, IL-6, 및 nitric oxide 생성에 미치는 영향)

  • Byun, Sung-Hui;Yang, Chae-Ha;Kim, Sang-Chan
    • The Korea Journal of Herbology
    • /
    • v.20 no.2
    • /
    • pp.7-16
    • /
    • 2005
  • Objectives : Scrophulariae Radix (SRE) is commonly used in combination with other herbs as a nutrient and health strengthening agent, and to remove 'heat' and replenish vital essence. The water-based extract of this herb can lower blood pressure in both anesthetized and concious animals, and exhibits an anti-inflammatory activity. But, there is lack of studies regarding the effects of SRE on the immunological activities in molecular levels. The present study was conducted to evaluate the effect of SRE on the regulatory mechanism of cytokines and nitric oxide (NO) in Raw 264.7 cells. Method : After the treatment of Scrophulariae Radix methanol extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. COX-2 and iNOS were determined by Immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results : Results provided evidence that SRE inhibited the production of nitrite and nitrate (NO), inducible nitric oxide synthase (iNOS), $interleukin-1{\beta}\;(IL-1{\beta})$ and interleukin-6 (IL-6), and the activation of phospholylation of inhibitor ${\kappa}B{\alpha}\;(p-I{\kappa}B{\alpha})$ in Raw 264.7 cells activated with lipopolysaccharide (LPS). Conclusion : These findings suggest that Scrophulariae Radix can produce anti-inflammatory effect, which may playa role in adjunctive therapy in Gram-negative bacterial infections.

  • PDF

Inhibitory Effect of Scorpion MeOH Extract on Nitric Oxide and Cytokine Production in Lipopolysaccharide - Activated Raw 264.7 Cells (전갈 메탄올추출물이 LPS로 유도된 Raw 264.7 cell에서의 nitric oxide 및 cytokine에 미치는 영향)

  • Choi, Jun-Hyeok;Lee, Jong-Rok;Jee, Seon-Young;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.721-727
    • /
    • 2007
  • Scorpion (SCP) has been clinically used for the treatment of endogenous wind to relieve convulsion, clearing away toxins, resolving hard masses and removing obstruction in the collaterals to relieve pain. Recent studies showed that scorpion toxins that affect the activating mechanism of sodium channels and indian black scorpion venom induced anti-proliferative and apoptogenic activity against human leukemic cell lines U937 and K562. There is lack of studies regarding the effects of SCP on the immunological activities. The present study was conducted to evaluate the effect of SCP on the regulatory effects of cytokines and nitric oxide (NO) for the immunological activities in Raw 264.7 cells. After the treatment of SCP MeOH extract dissolved in media for 1 h prior to the addition of lipopolysaccharide (LPS: 1 ${\mu}$g/ml), cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. Inducible nitric oxide synthase (iNOS) was determined by immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. As results, SCP inhibited the production of nitrite and nitrate (0.3 and 1.0 mg/ml), iNOS and p-$I_KB_{\alpha}$ protein, tumor necrosis factor-${\alpha}$ (0.3 and 1.0 mg/ml), interleukin-1${\beta}$ (0.3 and 1.0 mg/ml) and interleukin-6 (1.0mg/ml) in Raw 264.7 cells activated with LPS. These findings suggest that SCP can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

$NO_2^-$ and ATP synthesis in the EMT-6 cell stimulated by mercury chloride (수은에 의한 EMT-6 세포의 $NO_2^-$ 및 ATP 생성)

  • Oh, Gyung-Jae;Koh, Dai-Ha;Youm, Jung-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.3 s.54
    • /
    • pp.495-505
    • /
    • 1996
  • Effect or mercury chloride on the synthesis or $NO_2^-$ and ATP were observed in EMT-6 cells which were cultured with cytokines$(IL-1\alpha\;and\;IFN-\gamma)$ and various concentrations of mercury chloride from 0.05 to $0.8{\mu}M$. Viability of EMT-6 cells were observed above 90% in almost groups. There were not significant differences in the viability between mercury supplemented groups and control group. It suggests viability of EMT-6 cells were not influenced by these concentrations of mercury chloride. Results of the synthesis of nitrite showed significant time and group effect. There is a significant interaction effect between concentration of mercury chloride and culture time. The effect of various concentration of mercury chloride is not the same for all levels of culture time. There were significant differences in the synthesis of nitrite between mercury chloride supplemented groups and control group, and the synthesis of nitrite in EMT-6 cell by the supplement of mercury chloride was significantly decreased in a dose-dependent manner. Results of the synthesis of ATP showed a significant group effect, and the time main effect and the $Group{\times}Time$ interaction were also significant. There were significant differences in the synthesis of ATP between mercury chloride supplemented groups and control group, and the synthesis of ATP in EMT-6 cell by the supplement of mercury chloride was significantly decreased in a dose - dependent manner. These results suggest that the disorder of cell mediated immunity by mercury chloride could be related to the inhibition of nitric oxide synthesis which will be caused by the decreased synthesis of ATP.

  • PDF

Gonadotropins and Nitric Oxide Can Suppress the Expression of Mouse Follicular Bad and Bax Genes (생식소 자극 호르몬과 NO에 의한 생쥐 여포의 Bad와 Bax 유전자 조절)

  • 김외리
    • Development and Reproduction
    • /
    • v.1 no.2
    • /
    • pp.165-172
    • /
    • 1997
  • the pupose of this study was to investigate the effects of gonadotropin and nitric oxide (NO) on the expression of mouse follicular bad and bax genes that are known induce apoptosis. Large and midium size follicles of immature mice were obtained at 0, 24, and 48 hours time intervals after Pregnant Mare's Serum gonadotropins(PMSG, 5 I.U.) injection. Preovulatory follicles collected at 24 hrs after PMSG injection were cultured with or without various chemicals such as gonadotropin, gonadotropin Releasing hormone(GnRH), testosterone, Sodium nitroprusside (SNP) for 24 hrs at $37^{\circ}C$. After 24 hrs culture, the culture media was used for nitrite assay and total RNA was extracted, subjected to RT-PCT for the analyses of bad and bax expression. We found that expression of bad and bax genes in follicles was markedly reduced before and after in vivo priming with hCG. When the preovulatory follicles were cultured for 24 hrs in culture media with PMSG and hCG, the expression of bad and bax genes was decreased. Moreover, SNP (NO generating agent) can significantly suppress the expression of bad and bax genes in follicles when apoptosis was induced by GnRH agonist and testosterone. At the same time, nitrite production of culture media was increased in GnRH agonist + SNP, testosterone + SNP and SNP treated groups than control group. These data demonstrated for the first time that peptide hormones and NO may play important roles in the regulation of mouse follicular differentiation and may prevent apoptosis via supressing the expression of bad and bax genes.

  • PDF

Silibinin Inhibits LPS-Induced Macrophage Activation by Blocking p38 MAPK in RAW 264.7 Cells

  • Youn, Cha Kyung;Park, Seon Joo;Lee, Min Young;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.258-263
    • /
    • 2013
  • We demonstrate herein that silibinin, a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), inhibits LPS-induced activation of macrophages and production of nitric oxide (NO) in RAW 264.7 cells. Western blot analysis showed silibinin inhibits iNOS gene expression. RT-PCR showed that silibinin inhibits iNOS, TNF-${\alpha}$, and $IL1{\beta}$. We also showed that silibinin strongly inhibits p38 MAPK phosphorylation, whereas the ERK1/2 and JNK pathways are not inhibited. The p38 MAPK inhibitor abrogated the LPS-induced nitrite production, whereas the MEK-1 inhibitor did not affect the nitrite production. A molecular modeling study proposed a binding pose for silibinin targeting the ATP binding site of p38 MAPK (1OUK). Collectively, this series of experiments indicates that silibinin inhibits macrophage activation by blocking p38 MAPK signaling.

Effects of Albizzia Julibrissin on Chronic Ethanol-treated Erectile Dysfunction in Rats (Ethanol 에 의해 발기부전을 유도한 흰쥐의 성기능 개선에 미치는 합환피(合歡皮)의 영향)

  • Lee Min-Dong;Jeong Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.232-243
    • /
    • 2006
  • Objectives : Albizzia Julibrissin was formulated to contain various natural products known to cure erectile dysfunction. This study was aimed to investigate the effects of Albizzia Julibrissin on the nitric oxide synthase (NOS) activity, nitrite level, antioxidation and erectile responses induced by ethanol in corpus cavernosum penis of rats. Methods : The crushed Albizzia Julibrissin was extracted 3 times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 45.3 g. Albizzia Julibrissin extract was oral-administered 100 mg per 1 kg of body weight for 20 days, while the normal group was administered only with a saline. The efficacy of Albizzia Julibrissin against erectile function was examined as described in the text. Results : The level of urethral NOS activity and nitrite were increased by Albizzia Julibrissin. The level of lipid peroxide was decreased by Albizzia Julibrissin. The level of urethral lipid peroxide in the ethanol-Albizzia Julibrissin double administered rats was decreased as low as in the norma! group, while the one in the ethanol-treated group was increased. The level of urethral nitrite, NOS activity, glutathione and serum testosterone in the ethanol-Albizzia Julibrissin double administered rats were as high as in the normal group, while the one in the ethanol-treated group was decreased. The erectile response to cavernous nerve stimulation in the ethanol-Albizzia Julibrissin double administered rats increased as high as in the normal group while the one in the ethanol-treated group decreased. Conclusions : Albizzia Julibrissin was shown to be effective for the treatment of erectile dysfunction induced by ethanol in rats.

  • PDF